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Elastic Bond Network Model for Protein Unfolding Mechanics
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Recent advances in single molecule mechanics have made it possible to investigate the mechanical
anisotropy of protein stability in great detail. A quantitative prediction of protein unfolding forces at
experimental time scales has so far been difficult. Here, we present an elastically bonded network model
to describe the mechanical unfolding forces of green fluorescent protein in eight different pulling
directions. The combination of an elastic network and irreversible bond fracture kinetics offers a new

concept to understand the determinants of mechanical protein stability.
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Mechanical experiments with single protein molecules
have provided a host of novel information on the mechan-
ics and unfolding of protein structures. The interpretation
of such experiments has greatly profited from molecular
dynamics simulations that helped to discover the presence
and structure of intermediate states [1—6]. The major draw-
back of full atom molecular dynamics simulations is the
huge discrepancy between experimental (seconds) and
simulation time scales (nanoseconds). Even though ap-
proaches have been presented to bridge this gap in time
scales [7], quantitative comparison of simulated and ex-
perimental protein fracture forces has largely remained
impossible. This has led researchers to apply and develop
more coarse-grained models to tackle such questions [§—
12].

In a recent study we combined cysteine engineering with
single molecule force spectroscopy [13] to explore the
anisotropic deformation response of green fluorescent pro-
tein (GFP) [14]. The origin of the observed mechanical
anisotropy has so far been unclear. Here, we describe a
network model of elastic bonds that allows quantitative
description of the fracture of a protein structure loaded
with force in various directions. The basis of our model is
illustrated in Fig. 1. The protein structure is described as a
network of identical bonds which may break irreversibly
under force load. Network nodes are positioned at C,
coordinates. Bonds are assigned between nodes [ and m
if their distance is smaller than a cutoff radius R. The rate
coefficient for thermally activated fracture of an individual
bond is accelerated exponentially by a force F,, acting on
the bond [15]: kow(F},) = koexp(F},,Ax;/kgT), where
Ax; describes the distance between the bond’s bound and
transition states and k; its zero-force dissociation rate
coefficient, kp is Boltzmann’s constant, and 7 is tempera-
ture. The probability for the bond to withstand a force F,
applied to the bond with constant force-loading rate 7 is

Pi(F) = exp[k—; ]ZB—XTI(I - expE,;”B—AT)”)]. We treat fracture
of the whole network as a highly cooperative process and
assume that fracture of the first bond in the network will

induce fracture of the whole network. This assumption is
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PACS numbers: 87.15.La, 82.37.Rs, 87.14E—, 87.15.A—

motivated by the generally observed high cooperativity of
protein unfolding in mechanical single molecule experi-
ments [16]. Therefore, in our model, a folded protein
requires all bonds to be intact at any given time. The
probability for all bonds to be intact under an external
force F;; applied via network nodes i and j is given by
the product of all single bond probabilities:

Py(F;) = 1‘[ l‘[ eko/ MU T/Axy)(1/ g |;)(1 = imlir Fii A1 kBT

I<N m<lI
(D
The probability density gy(F;;) = —dPy/dF; to observe

the first fracture event of any single bond in the network at
a certain applied force F;; is given by

k
gn(Fij) = PN(Fij)<Z Z —Oea’ml'lf(F"f'Axl/kBT)) 2)

<vm<t M

gn(F;;) allows for the analytical calculation of fracture
force distributions that can be directly compared to experi-
mental data. In both Egs. (1) and (2), the force Fj,, acting
on each bond has been replaced by the product of a
coefficient a,,|;; and the external force F;;. a;,,|;; defines

.

FIG. 1. (a) Applying force to a protein structure (here GFP) via
two amino acids i and j, using cysteine engineering combined
with single molecule force spectroscopy. (b) GFP modeled as an
elastic bond network. (Inset) Network connections are springs
with identical spring constant that may irreversibly break.
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a force-action matrix that describes the fraction of the total
applied load F;; that each bond between nodes [/ and m
experiences in the network when force is applied via two
nodes i and j. It is important to note that almlij enters the
model as a parameter in order to predict the fracture
kinetics of the bond network under force. To calculate
the force-action matrix a,,|; ; we modeled the protein
structure as an elastic network [17,18] and assumed the
bonds in the system as elastic springs. Identical spring
constants of 10 N/m were assigned to each network con-
nection. We solved numerically the equations of motion of
the elastically coupled mass point system [19] while mov-
ing nodes i and j apart until a desired maximum deforma-
tion d ., was achieved. The total restoring force F; arising
on nodes i and j was monitored, while internal forces F,,
between nodes / and m were calculated from the deforma-
tion of each spring. The force-action matrix was then
calculated via a,,|;; = F,,/F;;. Experimental evidence
for GFP [14,20] strongly suggested that the protein shows
negligible distortions up to force loads as high as 700 pN.
A maximum deformation of d,,,,, = 0.5 A was thus chosen
in order minimize perturbation of network topology. a,,|; j
was set to zero if no bond had been assigned between nodes
[ and m by the cutoff criterion R.

A graphic representation of the force-action matrix
ay,,|;; for three different pulling directions in GFP [(i, j) =
(132,212), (3,132) and (6,221)] is given in Fig. 2.
Obviously, the force propagation through the network
depends strongly on the pulling direction. The leftmost
structure (132,212) shows high forces acting predomi-
nantly at the springs located between residues 132 and
212. In contrast, in the rightmost structure, the forces are
distributed among parallel springs with each spring bearing
much lower load.

We applied this elastic bond network model to experi-
mental data measured in force spectroscopy experiments
with GFP. Data from five different pulling geometries have
been published previously [14]. In addition, we measured

FIG. 2 (color online). Illustration of the force-action matrix
@;,l;; when force is applied to the GFP network via nodes
(132,212), (3,132), and (6,221). The width of the network
connections codes for the values of a,mlij, light (red) colors
denote extension, dark (blue) colors denote compression. Cutoff
radius Re = 6.75 A.

three further pulling directions to provide a large data set to
test the validity of our model. The experimental fracture
force distributions together with predicted gy(F;;) using
Eq. (2) (solid black lines) are shown in Fig. 3. With only
one exception, both the average unfolding force in the
different pulling directions and the width of the force
distributions are well reproduced. The discrepancy be-
tween model and data for the direction (26, 198) may be
attributed to an overassignment of bonds in the region
around residue 198 due to the simple cutoff criterion
applied. The good quantitative agreement with the rest of
the data set argues for a surprising simplicity underlying
the determinants of mechanical stability of proteins. Our
model only relies on structural information and entirely
neglects the potential influence of sequence variations as
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FIG. 3. Comparison of experimental fracture force distribu-
tions (open circles) for GFP with predicted fracture force dis-
tributions from the elastic bond network model (solid lines).
Parameters used: cutoff radius R. = 6.75 A, transition state
position Ax; = 0.28 nm, zero-force dissociation rate ky = 1 X
107% s~1. Calculated gy(F;;) have been normalized to match
observed number of events. Experimental conditions were as in
[14]. Broken lines: two-state analysis as described in [14].
Apparent transition state positions Ax,,, are given in the figure.
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long as they conserve the structure. Consistent with this
conclusion, many structure conserving mutations within
the immunoglobulin domain Ig27 from titin only showed
minor effects (=30 pN) on the unfolding force [21,22]
while S-sheet breaking proline mutations did alter the
stability of 1g27 significantly [23].

To assess the significance of our results, it is important to
note that our model contains four free parameters: two
parameters (Ax; = 0.28 nm and k, = 1 X 1073 s7!) de-
scribing single bond kinetics and two more parameters
(cutoff radius R- = 6.75 A and maximum deformation
dpax = 0.5 A) in order to calculate the force-action matrix
for the elastic network. We found that choosing a cutoff
radius R- of 6.75 A, consistent with the literature values
reported for elastic network modeling of protein B factors
[17,18], yields best agreement with the experimental data,
where smaller R eliminate long-range connectivity while
larger R, erase anisotropic mechanics. Larger d,,, values
result in deviation from the experimentally observed stabil-
ity order for direction (3, 212).

One interesting trend in the data in Fig. 3 is the strong
correlation between the width of the force distributions and
the average fracture force: distributions with low average
force are generally narrow, while high force distributions
are wide. Such a trend is well conserved for fracture force
distributions of various proteins in the literature [14,24—
26]. Our model now offers a simple explanation for this
general trend. If fracture of a protein structure is deter-
mined by the first fracture event of any bond in the net-
work, both fracture forces and distribution widths will be
simply determined by the topology of interconnection of
the bonds in the network. To illustrate this, we calculated
the fracture forces for two limiting cases of bond networks:
a serial and a parallel combination of N springs (see
Fig. 4).

In the case of the serial combination, fracture forces of
the network lie close to those of an individual spring with
only a weak, logarithmic dependence on N. For a parallel
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FIG. 4 (color online). (a) Scheme of a serial and a parallel
combination of N identical bonds. The amount of the applied
force transduced to individual bonds (i.e., a;,,; ;)is @ = 1 in the
serial configuration, while @ = 1/N in the parallel configura-
tion. (b) Fracture probability densities gy (F), calculated with
Eq. (2) for different number N of bonds loaded.

combination, both the distribution widths and the average
fracture forces grow proportionally in N. Hence, the cor-
relations found experimentally between average forces and
distribution widths may be explained by a variable number
of otherwise almost identical parallel bonds in a protein
bond network.

These considerations can be generalized to an arbitrary
network of bonds. First fracture in a discrete bond network
will be dominated by the bond that bears most of the
externally applied force. A consequence of Eq. (2) is that
the average force at which first fracture will be observed is
scaled by the largest value of the force-action matrix:

(F) = (F)/ maxay,|;, (3

where (F;) denotes the average fracture force of the ge-
neric bond type in the system when loaded individually. An
example is provided in Fig. 4: In a parallel combination of
bonds, force is equally distributed among many bonds,
maxa;,,, will be small and hence the fracture force high.

In the literature, cooperative unfolding of proteins under
load is generally discussed as a two-state process. Such a
treatment (broken lines in Fig. 3) generally yields a tran-
sition state position Ax,,, and a zero-force unfolding rate
ko. In this treatment, the width of fracture force distribu-
tions is reciprocal to Ax,,, while the position of the dis-
tribution on the force axis shifts logarithmically with k
[27]. How can the fracture of a network of multiple bonds
be reconciled with a two-state treatment?

If fracture of a multiple bond system is treated as a two-
state system, the analysis of fracture force distribution
widths yields an apparent transition state position:

Axypp = maxay,|;;Ax;. 4

Again, this effect is illustrated by the parallel bonded net-
work of Fig. 4 where the width of the force distributions
grows proportionally with N, indicating a decreasing
Ax,pp. The interpretation of the fracture forces in the
framework of a bonded network hence suggests varying
degrees of parallel bonding as the source for the different
transition state positions Ax,,, found in mechanical protein
unfolding. Therefore, care must be taken when interpreting
Ax,pp in terms of a real length. A direct prediction of
Egs. (3) and (4) is that the product of the average unfolding
force and apparent transition state position should be con-
stant:

(F)Ax,p, = (F1)Ax; = const. (5)

Obviously, the connectivity of the network and the
direction of force load represented in the «/,,|;; matrix is
canceled out in the product and the product reflects only
the properties of the generic bond type in the system.
Supporting this interpretation, the product of average frac-
ture force and apparent transition state position observed
experimentally at the same loading rate for the eight direc-
tions in GFP (Fig. 3) is well conserved (54 = 7 pN nm).
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This product is of the same magnitude for many proteins
which have been mechanically investigated so far (e.g.,
1g27: 50 pN nm [28]; tenascin: 54 pN nm [29]; ubiquitin:
N-C: 51 pNnm, 48-C: 54 pNnm [24]; T4 lysozyme:
52 pNnm [30]; protein L: 46 pNnm [31]; spectrin:
50 pNnm [32], etc.), providing further support for inter-
pretation of fracture forces in the framework of a bond
network.

The simplified model presented here and its choice of
parameters is certainly not unique to all proteins and may
have to be adapted for other proteins. With our choice of
parameters, forces significantly smaller than 100 pN can-
not be explained. Therefore, proteins with predominantly
a-helical structure exhibiting significantly lower unfolding
forces, like spectrin [32], T4 lysozyme [30], or leucine
zippers [33], require a different choice of parameters.
Comprehensive data sets of various pulling directions
also for other proteins are necessary for further refinement
of the model. Another limitation of our model concerns the
strict irreversibility of the fracture of the individual bonds.
This assumption will certainly not hold true if the mechani-
cal unfolding process approaches equilibrium as has been
observed for RNAse H [34], myosin tail [35], and leucine
zippers [33]. Kinetic modeling for multiple reversible
bonds will become important in this case [36]. Moreover,
the model presented here is not capable of predicting the
structure of potential intermediate states occurring along
the mechanical unfolding pathway. For these purposes,
application of more realistic models [4,8,11] is essential.

In summary, the description of mechanical unfolding of
proteins as fracture of an elastic bond network yielded
quantitative agreement with experimental data, thus ex-
plaining the large anisotropy of protein mechanics.
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