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Conventional methods to calculate the thermodynamics of crystals evaluate the harmonic phonon
spectra and therefore do not work in frequent and important situations where the crystal structure is
unstable in the harmonic approximation, such as the body-centered cubic (bcc) crystal structure when it
appears as a high-temperature phase of many metals. A method for calculating temperature dependent
phonon spectra self-consistently from first principles has been developed to address this issue. The method
combines concepts from Born’s interatomic self-consistent phonon approach with first principles calcu-
lations of accurate interatomic forces in a supercell. The method has been tested on the high-temperature
bcc phase of Ti, Zr, and Hf, as representative examples, and is found to reproduce the observed high-
temperature phonon frequencies with good accuracy.
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Many elements, alloys, and compounds appear in crystal
structures which should not be energetically stable. The
interatomic interactions place these systems at energy
saddle points on the potential surface for atomic positions
corresponding to the lattice sites of these structures rather
than minima for statically stable structures. The body
centered cubic (bcc) structure prevails as the simplest
and best known example. Although a stable structure at
low temperatures for several elements in the Periodic
Table, bcc becomes unstable in the harmonic approxima-
tion [1–3] for the group IV elements, for the rare-earth
elements, for the actinides, and for several alkaline-earth
elements. Nevertheless, at elevated temperatures, the bcc
structure emerges as the stable crystal structure for all these
elements. Zener considered this enigma long ago and
proposed a possible explanation: the large vibrational en-
tropy of the bcc crystal structure makes it thermodynami-
cally favorable at finite temperatures [4]. Also, Grimvall
et al. [5] pointed out the importance of electronic entropy
in the stabilization of the bcc crystal structure of the
group IV elements Ti and Zr.

So far, no satisfactory, quantitative explanation has been
presented for this situation. Density functional theory
(DFT) [6] forms the basis of contemporary microscopic
solid state theory and allows, in principle, to calculate
different properties of crystals completely ab initio, with-
out any fitting parameters. In particular, phonon spectra in
the harmonic approximation can be efficiently evaluated in
this way [7]. However, for the bcc phases mentioned above,
the phonon spectra in the harmonic approximation reveal
imaginary phonon frequencies of, e.g., Zr [8,9] for some
wave vectors, which shows that the bcc phase is from a
lattice dynamics point of view unstable (hence these ele-
ments are energetically unstable, and are referred to as
dynamically unstable in the bcc phase). A straightforward

calculation using DFT molecular dynamics (MD) [10]
should in principle be able to reproduce the stability of
the bcc phase for the above discussed elements, since MD
implicitly include temperature effects. However, MD suf-
fers from the fact that obtaining reliable free energies
implies a computationally very demanding task, which in
many cases makes these types of calculations intractable.

We propose here a solution to this problem, which builds
on a self-consistent ab initio lattice dynamics (SCAILD)
approach. In this Letter, we describe the essential aspects
of our method and apply it to the problem of stability of the
bcc phase for the group IV elements. Although several
aspects of our proposed theory have not been considered
before, we note that it conceptually has similarities with
the self-consistent phonon approach by Born [11], and that
several other self-consistent methods [12,13] have been
developed in the past. We will show that the SCAILD
theory gives phonon spectra of the bcc phase of Ti, Zr
and Hf which are in agreement with observations [14–16].
Although we will in the rest of this Letter focus on the
group IV elements, we point out here that what we provide
is a general scheme which can be used for any element and
compound.

Self-consistent phonon calculations are a natural exten-
sion of the theory of the harmonic lattice, and we initiate
our methodological description by first presenting the most
important features of this theory. The Hamiltonian

 H h �
X
R

P2
R

2M
�

1

2

X
R;R0

UR
����R�R0�UR0 ; (1)

describes a harmonic lattice where R are the equilibrium
lattice positions of the atoms, UR the displacements of the
atoms, PR the momentum of the atoms, M the atomic
mass, and ��� the interatomic force constant matrices.
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(Here the vectors R refer to the positions of a Bravais
lattice.) Diagonalizing the dynamical matrix

 

��D�k� �
1

M

X
R

����R�e�ikR (2)

for each wave vector k in the first Brillouin zone, one finds
the eigenvalues !ks and eigenvectors �ks of different
phonon modes (longitudinal or transverse) labeled by the
symbol s, N being the number of atoms. Introducing the
canonical phonon coordinates UR and PR

 U R �
1���������
MN
p

X
k;s

Qks�kse
ikR (3)

 P R �
1���������
MN
p

X
k;s

P ks�kseikR (4)

allows a separation of the original Hamiltonian of the
crystal into the Hamiltonians of 3N independent harmonic
oscillators.

The thermodynamic average of the operators Qy
ksQks

determines the mean-square atomic displacements and is
given by

 hQy
ksQksi �

@

!ks

�
1

2
� n

�
@!ks

kBT

��
; (5)

where n�x� � 1=�ex � 1� is the Planck function. In the
classical limit, i.e., for sufficiently high temperatures, the
operators �1=

�����
M
p
�Qks are replaced by real numbers,

 A ks � �

����������������������
hQy

ksQksi

M

s
: (6)

Calculating the gradient of the potential energy in
Eq. (1) with respect to the atomic displacements gives
the restoring force

 F R � �
X
R0

����R�R0�UR0 : (7)

Fourier transforming Eq. (7) and substituting UR with the
expression in Eq. (3) gives

 F k � �
X
s

M!2
ksAks�ks: (8)

Finally, using the orthogonality of the eigenvectors �ks, the
phonon frequencies can be expressed as

 !ks �

�
�

1

M
�ksFk

Aks

�
1=2
: (9)

The equations discussed so far can be solved for dy-
namically stable materials, where each atom is located in a
minimum of the function UR. It is important to note that
this does not have to correspond to a global total energy
minimum of the lattice, a local minimum suffices. For

dynamically unstable materials, UR does not have a mini-
mum at the lattice sites of the crystal structure. In this
situation, the equations discussed so far can not be used
straight-forwardly since they result in imaginary phonon
frequencies. This represents a situation where the lattice
under consideration spontaneously shifts atomic planes
and/or atomic positions so that a new crystal structure
lowers the total energy. We demonstrate the problem at
hand by comparing in Fig. 1 the calculated (zero tempera-
ture) phonon spectra of the bcc phase of the group IV
elements with experimental data obtained at elevated tem-
peratures. At these temperatures, the group IVelements are
observed to be stable in the bcc crystal structure, and the
measured phonon frequencies are naturally positive for all
lattice vectors. Figure 1 shows that calculations using a
static bcc lattice result in a dynamically unstable situation
with imaginary phonon frequencies (dashed curve). It
should be noted that the failure describing the bcc phase
of the group IV elements using harmonic lattice theory
(Fig. 1, right column) is not caused by any obvious error
in the energy functional used, and are likely not to be
improved even if an exact functional for a static lattice
were found.

In order to properly describe the high-temperature phase
of the group IV elements, one must include the interaction
between phonons [17]. As a result, phonon frequencies
turn out to be temperature dependent which we explore
numerically in this study. However, we neglect the phonon
damping due to decay processes of phonons (see, e.g.,
Ref. [18] and references therein), another anharmonic
effect. In the present calculations, thermal expansion ef-
fects have not been taken into account; all calculations
have been performed at constant volume. Furthermore,
the thermal excitations of the electronic subsystem has
not been considered in the present calculations of the
phonon frequencies.

The method used to calculate temperature dependent
phonons presented in this Letter considers a supercell
containing a number of atoms which are allowed to deviate
from the lattice positions stipulated by the crystal structure.
The deviations are calculated as a function of temperature,
by solving Eqs. (3)–(9) self-consistently. The deviation of
the atomic positions away from the ideal lattice points
provides an extra entropy to the system, and the stabiliza-
tion of the bcc structure for the group IV elements as a
function of increasing temperature may as we will see
below be found.

As regards the calculational details of the force calcu-
lation, we used the VASP package [19], within the general-
ized gradient approximation (GGA). The PAW potentials
used required energy cutoffs of 197 eV for Ti, 175 eV for
Zr, and 243 eV for Hf. The k-point mesh was a 6� 6� 6
Monkhorst-Pack grid, and the supercell used was obtained
by increasing the bcc primitive cell 4 times along the 3
primitive lattice vectors.

PRL 100, 095901 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2008

095901-2



In practice, our calculations are done by first calculating
a starting guess for the phonon dispersions by means of a
standard supercell calculation. The phonon frequencies
corresponding to k-vectors commensurate with the super-
cell are then used to calculate the atomic displacements
through Eqs. (3)–(6). Here, it should be noted that the signs
of the amplitudes Aks [see Eq. (6)], should be chosen
randomly, with equal probabilities for� and �. This is an
approximation to the procedure in which Aks is sampled
continuously to obtain the correct mean-square deviations
of the modes. This approximation however conserves cor-
rectly the property that the displacements in Eq. (3) are
R-dependent. Furthermore, it should be noted that the
eigenvectors �ks calculated in the initial calculation are
not updated throughout the rest of the procedure. This
however does not introduce any extra approximation; it
merely guarantees that the longitudinal and transverse
modes are fixed to the modes of the bcc lattice. Starting
from the equilibrium geometry used in the initial supercell
calculation, the atoms are displaced according to Eq. (3),
and the forces on these displaced atoms are calculated.
From the Fourier transform of the atomic forces, a new set
of frequencies are calculated through Eq. (9). To retain the
correct symmetry of the calculated phonon dispersion, the
symmetries of the different k-vectors are restored by

 �2
ks �

1

mk

X
S2S�k�

!2
S�1ks; (10)

where S�k� is the symmetry group of the wave vector k,
and mk the number of elements of the group. From the
different iterations, frequency distributions of the modes
are obtained, and a new set of frequencies are supplied by

the mean frequencies of these distributions,

 !2
ks�N� �

1

N

XN
i�1

�2
ks�i�; (11)

where �ks�i�, i � 1; . . . ; N are the symmetry restored
frequencies from all iterations. The new set of frequencies
calculated in (11) determines a new set of displacements
used to calculate a new set of forces. Philosophically, our
approach is similar to Born’s self-consistent phonon the-
ory, with the main difference being that we consider a
direct force calculation from a super cell with Hellman-
Feynman forces calculated from density functional theory.

Figure 1 shows the calculated phonon dispersions to-
gether with the experimental data of Refs. [14–16] for the
bcc phase of the group IV metals at temperatures 1293 K,
1188 K, and 2073 K for Ti, Zr, and Hf, respectively. The
finite temperature calculations predict the stability of the
bcc phase of all group IV metals by promoting the fre-
quencies of the phonons along the � to N symmetry line
and around the P symmetry point from imaginary to real.
The finite temperature calculations of phonons result in an
overall quantitative agreement with experimental values.
Smaller deviations are observed around the P and H point
of the Brillouin-zone, most likely due to finite size effects
of the supercell used in the calculations.

From the self-consistent phonon spectrum, the free en-
ergy is approximated from the density of states of the
phonons g�!� through the expression

 F�T� �
Z 1

0
d!g�!�

�
@!
2
� kBT ln�1� e�@!=kBT�

�
;

(12)
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FIG. 1. The phonon dispersions of the group IV metals. The solid lines are the first principles self-consistent phonon calculations. In
the left column, the finite temperature calculations, and in the right column, the T � 0 K calculations. Imaginary frequencies are
dashed lines (see text). The filled circles are the experimental data of Refs. [14–16].
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which has been shown by Cochran et al. [20] to give an
entropy correct to leading order in anharmonic perturba-
tion theory. Figure 2 shows the convergence of the free
energy for the three elements considered in this Letter. In
all calculations presented here, the self-consistent cycle
was terminated when the difference in the approximate
free energy of the lattice between two consecutive itera-
tions was less than 1 meV. Convergence in the free energy
with such accuracy is very encouraging and opens up the
possibility to investigate temperature induced phase stabil-
ity for a very large set of materials, since the accuracy
needed to, e.g., resolve crystallographic energy differences
is of the order of a few meV or more. This prediction has
also been tested by using interatomic forces calculated
with the embedded atom potentials of Refs. [21,22]. The
free energy difference between the hcp and bcc structures
were calculated as functions of temperature for Ti and Zr.
Here, the theoretically predicted hcp to bcc transition
temperatures were within 	25% of the corresponding
experimental temperatures.

In summary, a quantitative theory successfully explains
the long lasting question concerning thermal, entropy
driven stabilization of dynamically unstable materials.
Application to the group IV elements reproduces the mea-
sured phonon spectrum of these elements at elevated tem-
peratures with good accuracy. We note that the presented
method reproduces observed high-temperature phonon
spectra with good accuracy and that the method when
used at low, but nonzero temperatures, results in imaginary
frequencies for, e.g., bcc Ti. This shows that at low tem-
peratures, this element is unstable in the bcc phase, in
agreement with observations. Other systems where one

can expect success of this method are the bcc phase of
f-electron materials as well as, the high pressure phase of
Fe, and many of the ferroelectrics. The approach has
advantages over traditional methods such as MD simula-
tions in that complications associated with metallic mate-
rials are avoided and, most importantly, that a much
smaller set of atoms is needed.
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FIG. 2. The change in free energy between two consecutive
iterations, here plotted as a function of the number of iterations.
The inset in the figure shows the same plots but at a smaller
energy scale.
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