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(Received 15 May 2007; published 4 March 2008)

Basquin’s law of fatigue states that the lifetime of the system has a power-law dependence on the
external load amplitude, tf � ���0 , where the exponent � has a strong material dependence. We show that
in spite of the broad scatter of the exponent �, the fatigue fracture of heterogeneous materials exhibits
universal features. We propose a generic scaling form for the macroscopic deformation and show that at
the fatigue limit the system undergoes a continuous phase transition. On the microlevel, the fatigue
fracture proceeds in bursts characterized by universal power-law distributions. We demonstrate that the
system dependent details are contained in Basquin’s exponent for time to failure, and once this is taken
into account, remaining features of failure are universal.
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Disordered media subject to subcritical external loads
present a time dependent macroscopic response and typi-
cally fail after a finite time [1]. Such time dependent
fracture evidently plays a crucial role in a large variety of
physical, biological, and geological systems, such as the
rupture of adhesion clusters of cells in biomaterials under
external stimuli [2], the subcritical crack growth due to
thermal activation of crack nucleation [3,4], creep [5] and
fatigue fracture of materials [6,7], and the emergence of
earthquake sequences [8]. One of the most important scal-
ing laws of time dependent fracture is the empirical
Basquin law of fatigue which states that the lifetime tf of
samples increases as a power law when the external load
amplitude �0 decreases, tf � ���0 [9]. The measured val-
ues of the Basquin exponent � typically vary over a broad
range indicating a strong dependence on material proper-
ties [9–11].

In this Letter we study the fatigue fracture of heteroge-
neous materials focusing on the underlying microscopic
mechanism of the fatigue process and its relation to the
macroscopic time evolution. We develop two generic mod-
els of time dependent fracture, namely, a fiber bundle
model and a discrete element approach, which both capture
the most important ingredients of the fatigue failure of
disordered materials. Analytic solutions and computer
simulations reveal that the models recover the Basquin
law of fatigue, whose exponent is determined by the dam-
age process. We show that, as a consequence of healing, a
finite fatigue limit emerges at which the system undergoes
a continuous phase transition from a regime where macro-
scopic failure occurs at a finite time to another one exhib-
iting only partial failure in the system having an infinite
lifetime. Based on analytic solutions, we propose a generic
scaling form for the macroscopic deformation. On the
microlevel the fatigue of the material is accompanied by
an avalanche activity where bursts of local breakings are

triggered by damage sequences. We demonstrate analyti-
cally that the microscopic bursting activity underlying
fatigue fracture is characterized by universal power-law
distributions which implies that the nonuniversality of the
Basquin exponent at the macro-level is solely due to the
specific degradation process of the material.

First we consider a mean-field model of fatigue fracture,
namely, a fiber bundle model (FBM) where fibers fail
either due to immediate breaking or to ageing [12]. For
the load redistribution after failure events, equal load shar-
ing is assumed so that all the fibers carry the same load
[13]. During the evolution of the system, a fiber breaks
instantaneously at time t when the load on it p�t� exceeds
the local tensile strength pith (i � 1; . . . ; N). All intact
fibers accumulate damage c�t� due to the load p�t� that
they have experienced and break when c�t� exceeds the
local damage threshold cith (i � 1; . . . ; N). The accumu-
lated damage c�t� up to time t is obtained by integrating
over the entire loading history of the specimen c�t� �
a
R
t
0 e
���t�t0�=��p�t0��dt0, where a > 0 is a scale parameter,

while the exponent � > 0 controls the rate of damage
accumulation [10,11]. To capture damage recovery in the
model due to healing of microcracks [10] or thermally
activated rebinding of failed contacts [2,8], we introduce
a memory term in the above damage law of exponential
form whose characteristic time scale � defines the memory
range of the system [2,4,8]. Hence, during the time evolu-
tion of the bundle, the damage accumulated over the time
interval t0 < �t� �� heals. Assuming independence of the
two breaking thresholds pth and cth, the macroscopic evo-
lution of the system under a constant external load �0 can
be cast into the form

 �0 � f1� F�c�t��gf1�G�p�t��gp�t�; (1)

where G and F denote the cumulative distributions of pth

and cth, respectively. We solved Eq. (1) analytically obtain-
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ing the load p�t� on the intact fibers at a constant external
load �0 <�c, with the initial condition p�t � 0� � p0,
where p0 is the solution of the constitutive equation �0 �
�1�G�p0��p0 [13]. Here �c denotes the strength of the
material. The most important input parameters of the
model calculations are a, � and �.

On the macrolevel the process of fatigue is characterized
by the evolution of deformation "�t� of the specimen,
which is related to p�t� as p�t� � E"�t�, where E � 1 is
the Young modulus of fibers. Neglecting immediate break-
ing and healing, for uniformly distributed threshold values
the exact solution of the equation of motion Eq. (1) reads

 "�t� � �0��tf � t�=tf�
�1=�1��� and tf �

���0

a�1� ��
;

(2)

where tf denotes the lifetime of the system. Equation (2)
shows that damage accumulation leads to a finite time
singularity where the deformation "�t� of the system has
a power-law divergence with an exponent determined by �.
It is important to emphasize that tf has a power-law
dependence on the external load �0 in agreement with
Basquin’s law of fatigue found experimentally in a broad
class of materials [9–11]. The Basquin exponent of the
model therefore coincides with that of the microscopic
degradation law � � �. Another interesting outcome of
the derivation is that the macroscopic deformation "�t� of a
specimen undergoing fatigue fracture obeys the generic
scaling form "�t� � ��0S�t�

�
0 �, where the scaling function

S has the property S�t��0 � � �ta � t�
�
0 �
�1=�1���, with ta �

a�1� �� and the scaling exponents are � � 1 and � � �.
Figure 1 presents a verification of this scaling law on
experimental data from asphalt specimens obtained at
two different load values [12]. The good quality data

collapse obtained by rescaling the two axis and the
power-law behavior of S as a function of the time-to-failure
demonstrates the validity of our scaling relation.

Healing dominates if for a fixed load �0 the memory
time � is smaller than the lifetime obtained without healing
� & tf��0; � � �1�. Then, a threshold load �l emerges
below which the system relaxes; i.e., the deformation "�t�
converges to a limit value with a characteristic relaxation
time tr resulting in an infinite lifetime. Figure 2 presents
the characteristic time scale of the system varying the
external load over a broad range. The results from numeri-
cal simulations with the complete FBM (i.e., including
immediate breaking and healing) are in excellent agree-
ment with the measured lifetime of asphalt samples for
�0 >�l, recovering also the Basquin exponent [12]. The
regime below �l is of particular importance in geodynam-
ics where memory effects take place during cyclic loading
of rocks with a stress amplitude increasing from one cycle
to the next [14]. It is important to note that approaching the
fatigue limit �l from either side, the characteristic time
scale diverges. Figure 3 shows that both the relaxation time
tr and the lifetime tf follow a power law as a function of the
difference from the fatigue limit with distinct exponents:
tr � ��l � �0�

�1=3 and tf � ��0 � �l��2=3. We stress that
the exponents neither depend on the disorder distributions
(F and G) nor on the details of the damage law (a, �, and
�); i.e., they are universal, implying a continuous phase
transition at the fatigue limit �l between partial failure and
macroscopic fracture (see Fig. 3).

Our calculations revealed that the Basquin law of life-
time emerges on the macrolevel as a consequence of the
competition between the two microscopic failure mecha-

FIG. 1 (color online). Scaling plot of deformation-time curves
measured experimentally on asphalt specimens [12]. The scaling
function S, obtained by rescaling the two axis, has a power-law
dependence on the time-to-failure.

FIG. 2 (color online). Characteristic time scales tr and tf of the
system. The complete FBM corresponding to Eq. (1) which
includes immediate breaking and healing is solved numerically.
For �0 >�l we see Basquin’s law and both models provide a
very good fit of the lifetime data of asphalt. The fatigue limit �l
is indicated by the vertical dashed line.
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nisms of fibers. Rewriting Eq. (1) in the form of the
constitutive equation of simple FBMs as �0=f1�
F�c�t��g � f1�G�p�t��gp�t� it can be seen that the slow
damage process on the left-hand side quasistatically in-
creases the load on the system: ageing fibers accumulate
damage and break slowly one by one in the increasing
order of their damage thresholds cith. After a number �d of
damage breakings, the emerging load increment on the
remaining intact fibers can trigger a burst of immediate
breakings. Since load redistribution and immediate break-
ing occur on a much shorter time scale than damage
accumulation, the entire fatigue process can be viewed
on the microlevel as a sequence of bursts of immediate
breakings triggered by a series of damage events happen-
ing during waiting times T, i.e., the time intervals between
the bursts. The microscopic failure process is characterized
by the size distribution of bursts P���, damage sequences
P��d�, and by the distribution of waiting times P�T�. At
small loads �0 	 �c most of the fibers break in long
damage sequences, because the resulting load increments
do not suffice to trigger bursts. Increasing �0 the total
number of bursts nb increases linearly nb � �0 and a
power-law regime of burst sizes emerges P��� � ���

with the well-known mean-field exponent of FBM � �
5=2 [15]. When macroscopic failure is approached �0 !
�c the failure process accelerates such that the size �d and
duration T of damage sequences decrease, while they
trigger bursts of larger sizes �, and, finally, macroscopic
failure occurs as a catastrophic burst of immediate failures.
Since in the limiting case of �0 ! �c a large number of
weak fibers breaks in the initial burst, we found that the
distribution P��� has a crossover to a smaller exponent
� � 3=2, in agreement with Ref. [15]. All these results are
independent of �, a, and �.

Since damage events increase the load on the remaining
intact fibers until an immediate breaking is triggered, the
size of damage sequences �d is independent of the damage
characteristics c�t� and F�cth� of the material, instead, it is
determined by the load bearing strength distributionG�pth�
of fibers. Under broad conditions this mechanism leads to
an universal power-law form with an exponential cutoff
P��d� ���1

d exp���d=h�di�, where h�di � �
�1
0 . The

damage law c�t� of the material controls the time scale of
the process of fatigue fracture through the temporal se-
quence of single damage events. In damage sequences fi-
bers break in the increasing order of their damage thresh-
olds cith which determine the time intervals �t between
consecutive fiber breakings. Analytic calculations showed
that P��t� has an explicit dependence on � as P��t� �
�t��1�1=��; however, the duration of sequences T �
P�d
j�1 �tj, i.e., the waiting times between bursts, fol-

low a universaly power-law distribution P�T� �
T�1 exp��T=hTi�, where only the cutoff has � dependence
hTi � ���1���0 (see Fig. 4).

The macroscopic lifetime tf of a finite system can be
related to characteristic quantities of the microscopic fail-
ure process as tf �

Pnb
i�1 Ti, from which the average life-

time can be obtained in the form tf 
 hnbihTi. In the load
regime where the generic scaling laws of the distributions
P���, P��d�, and P�T� prevail, this leads to the form tf �
���0 in agreement with the Basquin law Eq. (2) of the
system. The results demonstrate that the Basquin law of
lifetime on the macroscale is a fingerprint of the scale-free
microscopic bursting activity, with the material depen-
dence entering only through the damage law determining
the waiting times between bursts.

To study the effect of stress concentration and crack
growth in fatigue fracture, we also developed a discrete
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FIG. 4 (color online). Rescaled plot of waiting time distribu-
tions P�T� obtained by FBM simulations. Inset: Corresponding
results of two-dimensional DEM simulations.

FIG. 3. The relaxation time tr and lifetime tf as a function of
j�l � �0j for different disorder distributions and � exponents.
The straight lines have slopes �1=3 and �2=3.
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element model (DEM) [16] in which we discretize a two-
dimensional disc-shaped specimen in terms of randomly
shaped convex polygons connected by elastic beams. The
beams fail either due to immediate breaking or damage
which are coupled in a single failure variable q�t� �
p�t� � a

R
t
0 e
��t�t0�=�p�t0��dt0. Here p�t� describes the

deformation state of the beam taking into account both
stretching and bending p�t� � �"="th�

2 �
max�j�1j; j�2j�=�th, being " the longitudinal deforma-
tion, �1 and �2 the bending angles at the two ends of
the beam, and "th and �th denote the threshold values a
beam can sustain under stretching and bending, re-
spectively. As a consequence, the parameters a, �, and �
play the same role as their counterparts in our FBM.
The time evolution of the system is followed by numeri-
cally solving the equations of motion of polygons. The
breaking criterion q�t�> 1 is evaluated at each time step
and beams which fulfil the condition are removed [16]. We
study the fatigue fracture under diametric compression of
discs with constant stress �0 (Brazil test). Figure 2 shows
that DEM provides also an excellent fit of the lifetime data
of asphalt specimens [12]. DEM simulations revealed that
in the presence of stress concentrations bursts are spatially
correlated and they can be identified as sudden advance-
ments of slowly growing cracks. DEM results on burst
characteristics also show power-law behavior as the
mean-field FBM, but with different exponents due to the
two-dimensionality of the model. The localized stress con-
centration built up around cracks gives rise to higher values
of the exponents of the size distribution of bursts P��� �
��2:7, and of damage sequences P��d� ���1:8

d , while for
the waiting time distribution P�T� the DEM exponent falls
very close to the mean-field value (see Fig. 4). The results
proved to be independent of the value of �.

Although the exponent of Basquin’s law depends on the
microscopic damage accumulation, we found an aston-
ishing spectrum of universal features hidden behind this
originally empirical law. We discovered in the experi-
mentally relevant situation of finite damage memory a
continuous phase transition between partial failure and
macroscopic rupture. On the microscopic level of indi-
vidual breaking events we showed that the separation of
time scales of the two failure mechanisms leads to a
bursting activity, where we disclosed several universal
scaling laws in the distributions and determined their ex-
ponents as well in mean-field as in two dimensions. In
summary our approach provides a direct connection
between the microscopic mechanisms constituting the
main ingredients of the model (i.e., immediate breaking,
damage accumulation and healing of microcracks) and
the macroscopic behavior of the fatigue process. The
(macroscopic) Basquin exponent coincides with the (mi-
croscopic) exponent of the degradation law, namely � �
�. Our methodology is also capable to show explicitly
the bridge between the (universal) mechanism related
with the scale-free bursting activity at the micro-scale

and the (nonuniversal) lifetime law of the material at the
macroscale.

This work opens up new experimental challenges. Our
scaling relation of the macroscopic deformation should be
verified on various types of materials, after which it could
help to extract the relevant information from fatigue life
measurements. In the infinite lifetime limit, �0 & �l, the
experimental confirmation of the power-law variability
with load of the relaxation time should certainly provide
some considerable insight on the role of healing in the
entire fatigue process. For similar reasons, it would be also
interesting to verify the distinct lifetime behavior obtained
from the model in the other limit of low external loads,
�0 * �l. On the microscopic level both the size �d of
damage sequences and magnitude T of waiting times
between bursts should obey universal power-law distribu-
tions that might reflect the intrinsic features of the typical
restructuring events taking place at the microscopic level.
Acoustic emission measurements could be conducted in
conjunction with fatigue experiments to confirm our claim
for universality behind Basquin’s law.
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