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We discuss the dynamics of an atomic Bose-Einstein condensate when pairs of atoms are converted into
molecules by single-color photoassociation. Three main regimes are found, and it is shown that they can
be understood on the basis of time-dependent two-body theory. In particular, the so-called rogue
dissociation regime [Phys. Rev. Lett. 88, 090403 (2002)], which has a density-dependent limit on the
photoassociation rate, is identified with a transient regime of the two-atom dynamics exhibiting universal
properties. Finally, we illustrate how these regimes could be explored by photoassociating condensates of
alkaline-earth atoms.
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The conversion of atom pairs into molecules, using
either Feshbach resonances [1] or photoassociation [2],
serves as a tool to probe the many-body properties of
ultracold gases [3]. In particular, photoassociation, the
process of associating atoms with a resonant laser light,
was recently used to observe pair correlation in a one-
dimensional Bose gas [4] and the crossover between
Bose-Einstein condensate (BEC) and Bardeen-Cooper-
Schrieffer (BCS) superfluid [5]. Conversely, it can be
used to reach new regimes. Many-body theories have
suggested the coherent conversion of an atomic BEC into
one of molecules [6,7], macroscopic superposition [8], and
production of correlated atom pairs at high laser intensity
[9–11]. Several experiments have made the first steps in
these directions [12–15], but have been limited by inherent
losses or insufficient laser power. Reference [11] identified
three regimes of photoassociation as a function of loss and
laser intensity. The intriguing density dependence of the
regime boundaries suggested that they are associated with
many-body effects.

In this Letter, we first apply time-dependent two-body
theory to photoassociation with a single continuous laser
and distinguish three transient regimes. We then show how
these transients explain the previously identified regimes in
the many-body theories.

For two atoms of mass M interacting with a resonant
laser, photoassociation is described by two equations cou-
pling a scattering and a molecular channel [16],
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where ~r is the relative separation of the two atoms, ��~r�
and �m�~r� are the components of the relative motion wave
function for the scattering and molecular channels, U and
Um are the interaction potentials in each channel, � is the

spontaneous emission rate from the molecular channel (we
assume that decayed molecules are lost from the system),
and W couples the two channels. W is proportional to the
square root of the laser intensity. We expand j�i and j�mi

in the bases of eigenstates of � @
2

Mr
2 �U and � @

2

Mr
2 �

Um, respectively, and assume that only the scattering ei-
genstates j’~ki (indexed by wave vector ~k) are relevant in
the scattering channel, and that a single bound eigenstate
j’mi is resonant in the molecular channel. Choosing
h’mj’mi � 1 and h’~kj’~pi � �2��3�3� ~k� ~p�, one obtains

 i@ _C~k�t� � EkC~k�t� � w~kCm�t�; (1)
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where C~k and Cm are the amplitudes in states j’~ki and
j’mi, Ek � @

2k2=M, � is the resonant bound state energy
with respect to the scattering threshold (which can be
adjusted by tuning the laser frequency), and w~k �

h’mjWj’~ki are the coupling matrix elements. According
to Wigner’s threshold laws,w~k goes to a constant w for low
k� 1=jrcj, where rc is the largest of the extent of the
molecule, the van der Waals length [2], or the scattering
length a associated with U.

In ultracold gases, atoms collide at nearly zero energy.
For the stationary solution at zero energy, C~k goes to
�4�A=k2 for low k, where A is the optically induced
complex scattering length [16,17] given by 4�@2A �
�Mjwj2=����0 � i�=2� and the light shift �0 �R d3k
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which corresponds to the number of atoms lost per unit of
time and volume due to photoassociation with the excited
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state and subsequent decay by spontaneous emission. From
kinetic theory the density � of remaining atoms in a
thermal gas is expected to follow the rate equation

 _� � �K�2: (4)

We now take into account the fact that the laser is turned
on at t � 0, creating a strong perturbation to the two-body
system. As a result, transient regimes appear before the
stationary solution is reached. Initially, the two atoms are
in the scattering channel with nearly zero collision energy:
i.e., C~k � �2��

3�3� ~k� and Cm � 0 at t � 0. For t > 0 we
choose to decompose C~k�t� as follows:

 C~k�t� � �2��
3�3� ~k� � Cad

~k
�t� � Cdyn

~k
�t�; (5)

where Cad
~k
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w~k
Ek
Cm�t� is the adiabatic response to the

turn-on of the laser [obtained by setting _C~k � 0 in Eq. (1)],

and Cdyn
~k
�t� is the dynamic response. Solving for Cdyn

~k
from

Eqs. (1) and (5) and inserting it into Eq. (2), we obtain
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where we have set w~k � w, which is valid for t� tc, tc �
Mr2

c=@ being in most cases a very short time scale on
the order of 10 ns. We then assume that _Cm�t� is local-
ized at short times, which leads to the ansatzR
t
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where � is to be deter-
mined, and we approximate i@ _Cm�t� by the short-time
expression i@Cm�t�=t. This leads to
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which justifies that _Cm�t� / t
�1=2 is localized at short times

and yields � � �=2. For small S�t�, our ansatz may not
hold, but this has little consequence precisely because S�t�
is small.

We can now calculate an instantaneous rate coefficient,
based on the time variation of the populationR
k�0

d3 ~k
�2��3
jC~kj

2 in the initial state. This population is al-

ways infinite, because we started from a state that is not
normalizable over an infinite volume. However, from
Eq. (1), its time derivative has a finite value, which we
identify as minus the instantaneous rate coefficient,�K�t�.
Using Eq. (5), we can simplify it to

 K�t� � �
2

@
Im�w	Cm�t��: (7)

Depending on the relative strength of the terms in the
denominator of Eq. (6), this coefficient goes through three

subsequent regimes illustrated in Fig. 1: linear (a), square
root (b), and constant with time (c). Namely,
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2. Note that tw � tA only for high
laser intensity. If tw * tA, regime (a) occurs for
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Photoassociation converts the initial state into the mo-
lecular state, and the loss rate coefficient grows linearly in
regime (a). In regime (b) the laser also drives molecules
back to the atom-pair continuum. This broadens the reso-
nance, and the loss rate coefficient still increases but more
slowly. Finally, in regime (c) the molecules start decaying
spontaneously, and the rate coefficient reaches its steady-
state maximal value, which is the rate coefficient Eq. (3)
obtained from the stationary solution.

The atomic density is expected to follow Eq. (4) with
the time-dependent rate coefficient (7). Whether the tran-
sient regimes (a) and (b) are observable depends on
whether an appreciable fraction of the density is photo-
associated over these time scales. Let us define the deple-
tion time t� for which an appreciable fraction is depleted,
i.e., K�t���0t� � 1, where �0 is the initial density. Three
cases are possible. If tA, t� � t�, then only the final con-
stant rate coefficient is relevant. If tw � t� � tA, then the
first regime to lead to observable losses is regime (b). If
t� � tw, t�, then the only relevant regime is (a).

Interestingly, when regime (b) dominates, the molecular
amplitude vanishes and the system has a universal behav-
ior. The loss rate (9) and the atom-pair distribution
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do not depend on the microscopic details of the transition,
but just on the mass of the species. Here, Erf denotes the
error function. The condition tw � t� � tA, needed for

FIG. 1. Schematic evolution of the rate coefficient (thick black
curve) showing the three regimes (a), (b), and (c) at sufficiently
high laser intensity (tw � tA). The gray curves correspond to the
limiting expressions (8)–(10). In particular, the parabolic curve
associated with Eq. (9) is a universal upper limit to the rate
coefficient.
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the observation of this regime, is equivalent to

 �1=3
0 jAj � �2��

�2=3 and �1=3
0 B� �2���2=3; (11)

where the length B is 8�@2=Mw�2. Finite temperature adds
the condition that K�t�� be smaller than the unitarity limit
h
M �, where � is the de Broglie wavelength. It fortuitously
coincides with the condensation condition for bosons
��3 * 1 [9,12].

We now turn to a many-body description. Photo-
association in a uniform BEC can be described (up to first
order in a cumulant expansion [18]) by the three equations
[10,11]
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where � is the condensate wave function (here a complex
number), and ��~r� and �m� ~r� are the pair wave functions
in the scattering and molecular channels. Higher-order
cumulants (such as the normal density of noncondensate
atoms [19]) contribute significantly only for t * t�, and do
not change the dynamics up to 10 	s in the examples to
follow. Inelastic collisions [20], not included here, do not
affect the atomic BEC during this time frame for typical
rate coefficients �10�10 cm3 s�1.

As in the two-body case, we can write
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where the adiabatic part Cad
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2� and
g ~k � h0jUj’~ki, j0i being the zero-momentum plane wave.
Elimination of the adiabatic part is now crucial, because it
introduces the light shift �0 but also the coupling constants
w~k and g ~k without resorting to contact interactions [11].
We find
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These equations are similar to those of Ref. [9], but contain
no ultraviolet divergence. Thus, we can safely set w~k � w
and g ~k � g � 4�@2a=M without any renormalization.

When the dynamical part Cdyn
k is negligible, we obtain

the familiar set of coupled Gross-Pitaevski�� equations in-
troduced in Ref. [21]. Ifweassumethat ��

������
�0
p

and �m�

0 initially, these equations admit two limiting regimes

[11,21]. In the adiabatic regime, w2�0�����0�2�
��=2�2, the molecular wave function can be adiabatically
eliminated, and the condensate density � � j�j2 then fol-
lows Eq. (4) with the rate coefficient (3) predicted by the
stationary two-body theory. On the other hand, in the co-
herent regime, w2�0�����0�2���=2�2, � and �m ex-
hibit coherent Rabi oscillations at a frequency ��
w

������
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The case where the dynamical part Cdyn
~k

cannot be
neglected corresponds to the ‘‘rogue dissociation limit’’
of Ref. [9]. Reference [11] showed that this occurs when
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for the adiabatic and coherent regimes, respectively, where
L � M

4�@2
w������
2�0

p was identified with a many-body length.

Figure 2 shows the three regimes: adiabatic, coherent,
and rogue dissociation. Most intriguing has been the de-
pendence of the regime boundaries on the density. In
particular, increasing the density makes it easier to reach
rogue dissociation from the adiabatic regime, but more
difficult from the coherent regime, according to Eqs. (15).

In light of the previous two-body analysis, we can now
interpret the adiabatic, coherent, and rogue regimes in
terms of the two-body regimes (a), (b), and (c). Using the
same approximations as in the two-body theory, we can
reduce the many-body Eqs. (12)–(14) to a rate equation
with a time-dependent coefficient

 K�t� �
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Im

jwj2 � gS�t�

���0 � i �2 � S�t� �
i@
t

: (16)

We emphasize that this rate coefficient does not depend on
the density and originates essentially from the two-body
coefficient (7). It follows that the three regimes (a), (b), and
(c) also apply for (16). In fact, the conditions for the
observation of regime (a), (b), or (c) during the depletion
time t�, expressed in terms of tw, t�, and tA, are equivalent
to the boundary conditions for, respectively, the coherent,
rogue dissociation, and adiabatic regime, as shown in

FIG. 2. Regimes of photoassociation in a BEC as a function of
the ‘‘detuning and width’’

�����������������������������������������
����0�2 � ��=2�2

p
and the laser

intensity I, for a fixed density. The boundaries are indicated by
dashed lines and equalities of time scales defined in the text.
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Fig. 2. Thus, the density dependence of these boundaries
originates simply from the usual rate equation of kinetic
theory. Note, in particular, that the rogue regime bounda-
ries (15) are equivalent to the conditions (11) for the
observation of the universal regime (b). This shows that
the length L has, in fact, no special significance.

The right panels of Fig. 3 compare the atomic conden-
sate evolution from Eqs. (12)–(14) with that following
from the rate coefficient Eq. (16) in the three regimes. It
shows that the short-time evolution is always consistent
with two-body dynamics and kinetic theory, justifying the
approximations we have made. Only in the coherent re-
gime, for t * t�, is the condensate nature of the gas re-
vealed due to collective effects that cannot be described by
a rate equation.

For alkali-metal atoms experimentally studied in
[12,15], the molecular state has a short lifetime on the

order of 10 ns. As a result, these experiments have been
confined to the adiabatic regime. Figure 3(a) shows a
typical case for sodium. To reach other regimes, very large
intensities are needed. On the other hand, photoassociation
near narrow intercombination lines leads to much longer-
lived molecules. Figures 3(b) and 3(c) show on-resonance
photoassociation in condensates of ytterbium and stron-
tium, for typical states below the intercombination line. For
moderate intensities, it appears possible to reach the uni-
versal regime (b) of pair dissociation. This creates corre-
lated pairs of atoms from a condensate, analogous to
correlated photons [22]. For strontium, it should be pos-
sible to reach the coherent regime, at least partially. Note,
however, that inelastic collisions, while not significantly
affecting the atomic condensate, reduce the molecular and
noncondensate populations by about a half in Fig. 3(c).

In summary, we showed how different regimes of photo-
association in a BEC originate from transient shifts and
broadenings in the two-atom dynamics. These have simple
analytical expressions and lead to a universal behavior in
the rogue or pair dissociation regime.
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FIG. 3 (color online). On-resonance photoassociation (��
�0 � 0) of a condensate of sodium (a), ytterbium (b), and
strontium (c) for typical transitions. In each row, the right panel
shows the population evolutions, according to Eqs. (12)–(14),
based on the parameters indicated by the black dot in the left
panel, which is a regime diagram similar to Fig. 2. Solid curve:
atomic condensate population; dot-dashed curve: molecular
population; dotted curve: correlated pair population. The short-
dashed curve shows the atomic condensate population following
from Eq. (4) with the rate (16). For sodium, we used the
conditions of Ref. [12] (jImAj=I � 2:95 fm=�W cm�2�, �=h �
18 MHz). Typical intercombination transition parameters were
used for ytterbium [23] (jImAj=I � 2:12 nm=�W cm�2�, �=h �
364 kHz) and strontium [24] (jImAj=I � 2:12 nm=�W cm�2�,
�=h � 15 kHz). Thus, we have �tw; t�; tA� � �0:17; 0:017;
0:0036� 	s for sodium, �0:044; 0:88; 35� 	s for ytterbium, and
�116; 21; 7:8� 	s for strontium. For all cases, the initial density is
�0 � 6
 1014 cm�3, and t� � 5 	s.
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