
Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory
at Strong Coupling

B. Basso,1 G. P. Korchemsky,1 and J. Kotański1,2
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We construct an analytical solution to the integral equation which is believed to describe logarithmic
growth of the anomalous dimensions of high-spin operators in planar N � 4 super Yang-Mills theory and
use it to determine the strong coupling expansion of the cusp anomalous dimension.
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1. Introduction.—The cusp anomalous dimension is an
important observable in four dimensional gauge theories
ranging from QCD to maximally supersymmetric N � 4
Yang-Mills theory (SYM) since it governs the scaling
behavior of various gauge invariant quantities like loga-
rithmic growth of the anomalous dimensions of high-spin
Wilson operators, Sudakov asymptotics of elastic form
factors, the gluon Regge trajectory, infrared singularities
of on-shell scattering amplitudes, etc. By definition [1],
�cusp�g� measures the anomalous dimension of a Wilson
loop evaluated over a closed contour with a lightlike cusp
in Minkowski space-time. It is a function of the gauge
coupling only, and its expansion at weak coupling is known
in QCD to three loops [2] and in N � 4 SYM theory to
four loops [3]. Recently, significant progress has been
achieved in determining �cusp�g� at strong coupling in
planar N � 4 SYM. Within the AdS/CFT correspondence
[4], �cusp�g� at strong coupling is related to the semiclas-
sical expansion of the energy of folded string rotating in
AdS3 part of the target space [5] (see also [6])

 �cusp�g� � 2g�
3 ln2

2�
�O�1=g�; g �

����
�
p

4�
; (1)

with � � g2
YMNc being ’t Hooft coupling. On the gauge

theory side, the Bethe ansatz approach to calculating
�cusp�g� in the weak coupling limit was developed in [7]
based on integrability symmetry of planar Yang-Mills
theory to one loop [8]. This approach was recently ex-
tended to all loops in planar N � 4 SYM theory.
Comparing integrable structures present on both sides of
the AdS/CFT correspondence, an all-loop asymptotic
Bethe ansatz was proposed in [9]. It involves a nontrivial
scattering phase satisfying the crossing symmetry [10]
whose explicit form was found in [11]. This led to an
integral equation for the all-loop cusp anomalous dimen-
sion [12,13], the Beisert-Eden-Staudacher (BES) equation,

 �̂�t��
t

et�1

�
K�2gt;0��4g2

Z 1
0
dt0K�2gt;2gt0��̂�t0�

�
;

(2)

with �cusp�g� � 8g2�̂�0�. Here, the kernel K�t; t0� is ex-
pressed in terms of Bessel functions, K�t; t0� �P
1
n;m�1 znm�g�Jn�t�Jm�t

0�=�tt0�, and its explicit form can

be found in [12]. At weak coupling, the Neumann series
solution to (2) yields perturbative expansion of �cusp�g� in
powers of g2 which agrees with the known four-loop result
[3]. At intermediate coupling, Eq. (2) was solved numeri-
cally in [14]. The obtained solution for �cusp�g� was found
to be a smooth function of g that matches for g > 1 the
string theory prediction (1) with high accuracy. Moreover,
an exact analytical solution to Eq. (2) in the limit g! 1
was recently constructed in [15] leading to �cusp�g� �
2g�O�g0�, in agreement with (1) and with the numerical
analysis of [14]. Equation (2) was analyzed further in [16],
but it has resisted an analytical solution so far. In parallel
development, the computation of the two-loop O�1=g�
corrections to the string theory prediction (1) was initiated
in [17]. Also, the result (1) was reproduced [18] from the
quantum string Bethe ansatz for a folded string.

In this Letter, we describe an approach to finding a
strong coupling expansion of the solution to Eq. (2). It
allows us to determine exact analytical expressions for the
coefficients in the 1=g-expansion of the cusp anomalous
dimension (1) to any desired order.

Let us introduce two functions ����t� � ����t�

 

et � 1

t
�̂�t� �

���2gt�
2gt

�
���2gt�

2gt
: (3)

Following [15], we expand ���t� over the Bessel functions

 ���t� �
X
k�1

��1�k�1�2k�J2k�t��2k;

���t� �
X
k�1

��1�k�1�2k� 1�J2k�1�t��2k�1;
(4)

with the expansion coefficients �k �
R
1
0 dt

0=t0Jk�t0����t0�
(� � �=� for k � even or odd). Substituting (3) into
Eq. (2) and separating even or odd in t parts, we find that
(2) is equivalent to the (infinite) system of equations
 Z 1

0

dt
t

�
���t�

1� e�t=2g
�

���t�

et=2g � 1

�
J2n�t� � 0;

Z 1
0

dt
t

�
���t�

1� e�t=2g
�

���t�

et=2g � 1

�
J2n�1�t� �

1

2
�n;1;

(5)

withn�1. The cusp anomalous dimension can be read from
small-texpansion���t�� t�cusp�g�=�8g

2��O�t2�. At weak
coupling, one finds from (5) that ���t� � J1�t� �O�g2�

PRL 100, 091601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
7 MARCH 2008

0031-9007=08=100(9)=091601(4) 091601-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.091601


leading to �cusp�g� � 4g2 �O�g4� in agreement with the
known one-loop result [1].

2. Exact solution.—The system (5) has the following
remarkable property. Introducing two functions ���t� �
���t� 	 �	�t� coth t

4g , or equivalently

 2���t� �
�

1� sech
t

2g

�
���t� � tanh

t
2g

�	�t�; (6)

we find from (5)

 

Z 1
0

dt
t

�
���t� � ��1�n���t�

�
Jn�t� � �n;1; (7)

(with n � 1), and the cusp anomalous dimension is now
given by �cusp�g� � �2g���0�. Here, in comparison with
(5), the dependence on g only resides in ���t�.

At large g, we expect from (6) that the functions ���t�
admit expansion in the Bessel function Neumann series

 ���t� �
X
k�0

��1�k�1J2k�t��2k;

���t� �
X
k�0

��1�k�1J2k�1�t��2k�1:
(8)

In distinction to (4), the first series involves J0�t� term
which ensures that ���0� � 0. Also, in virtue of J�1�t� �
�J1�t�, the coefficient in front of J1�t� is given by (�1 �
��1) so that it is only the sum that is uniquely defined. We
make use of this ambiguity to choose ��1 � 1.

Substitution of (8) into (7) yields an infinite system of
finite-difference equations for the coefficients �k.
Applying standard methods, we were able to construct its
solution for �k (with k � �1) in the following form (de-
tailed analysis will be published elsewhere)

 �k � �
1

2
��0�k �

X1
p�1

1

gp

c�p ��2p�1�

k � c�p ��2p�k �; (9)

where ��p�k are basis functions independent on g

 ��p�2m�
��m�p� 1

2�

��m�1���12�
; ��p�2m�1�

��1�p��m� 1
2�

��m�1�p���12�
; (10)

and the expansion coefficients c�p given by series in inverse
powers of the coupling, c�p �

P
r�0g

�rc�p;r. The sum over
p in the r.h.s. of (9) describes the contribution of zero
modes of (7). Their dependence on g is fixed by the addi-
tional condition of scaling behavior of �k (see Eqs. (15)
and (16) below). Knowing the c�p -coefficients, we can
determine the cusp anomalous dimension �cusp�g� �
�2g���0� � 2g�0 as
 

�cusp�g� � 2g�
X1
p�1

1

gp�1

�
2c�p����
�
p �

�
2p�

3

2

�

�
2c�p����
�
p �

�
2p�

1

2

��
: (11)

Let us now establish the relation between the coeffi-
cients �n and �n. To this end, we return to the relation (6)
and apply the identities

 

secht�1�
X
n�1

��1�na2nt
2n;

tanht�
X
n�1

��1�na2n�1t
2n�1;

(12)

where a-coefficients with even (odd) indices are related to
the Euler (Bernoulli) numbers. Replacing ���t� and ���t�
in (6) by the series (4) and (8), respectively, we make use of
the Bessel function series for �t=2�pJm�t� to obtain
 

�2m �
Xm
n�1

Xm�n�1

j�0


�2j�1K2n�1
2m;2j�1 � �2jK2n

2m;2j�;

�2m�1 �
Xm
n�1

Xm�n
j�0


�2j�1K
2n
2m�1;2j�1 � �2jK

2n�1
2m�1;2j�:

(13)

Here, the notation was introduced for the coefficients

 Kn
m;j��

an=gn

2��n�

��12�m�j�n����
1
2�m�j�n��

��12�m�j�n��1���12�m�j�n��1�
;

(14)

Replacing �j in (13) by their explicit expressions, Eqs. (9)
and (10), we express �2m and �2m�1 in terms of yet
unknown coefficients c�p .

3. Quantization conditions.—In our approach, the coef-
ficients c�p are determined from the behavior of �2m and
�2m�1, Eq. (13), at large m. To this end, we introduce the
functions z��x� � �2m�1 � �2m and examine their asymp-
totic behavior in the double-scaling limit

 m; g! 1; x �
�
m�

1

4

�
2
=g � fixed: (15)

Employing the approach of [14] and going through nu-
merical analysis of z��x�, we found that in the limit (15),
the solutions to (2) have the following remarkable scaling
behavior

 z��x� �
�gx��1=4

g
����
�
p

�
z�0�� �x� �

z�1�� �x�
gx

�O�1=g2�

�
;

z��x� �
�gx��3=4

4g
����
�
p

�
z�0�� �x� �

z�1�� �x�
gx

�O�1=g2�

�
;

(16)

where the functions z�r�� �x� (with r � 0) do not depend on g
and have faster-than-power decrease at large x. For x! 0,
small-x expansion of z�r�� �x� runs in integer positive powers
of x only. For x! 1, asymptotic behavior of z�r�� �x� is con-
trolled by the coefficients c�p . The quantization conditions

for c�p follow from the requirement
R
1
0 dxx

pz�r�� �x� �
finite for any given p; r � 0.

Let us start with the leading term z�0�� �x� in the expansion
(16). From (9) and (13), we evaluate z��x� � �2m�1 � �2m
in the scaling limit (15) and find that the sums in (13)
receive dominant contribution from large j. This allows us
to substitute the Kn

m;j-kernel in (13) by its leading asymp-
totic behavior and evaluate sum over large j in (13) by
integration

P
j �

R
dj, leading to
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 z��x� � �
g�5=4

2
����
�
p

X
p�0

c�p �
�
p�

1

4

�X
n�1

anxn�p�5=4

��n� p� 1
4�
� . . .

(17)

where ellipses denote terms suppressed by powers of 1=g.
Then, taking the Laplace transform w.r.t. x, we obtain
 Z 1

0
dxe�x=sz��x� � �

�gs��1=4

2g
����
�
p

�X
p�0

spc�p �
�
p�

1

4

��




�X
n�1

ans
n
�
� . . . (18)

The sum over n can be evaluated with the help of (12) asP
n�1ans

n � �
��
2
p

sin�s2�
sin��4�

s
2�

. As a function of s, it contains an

infinite number of both poles and zeros on the real s-axis.

Requiring that the integrals zp �
R
1
0 dxx

pz��x� should be
finite for p � 0, we find that, firstly,

R
1
0 dxe

�x=sz��x� is an
analytical function of s for Re s > 0 and, secondly, it scales
at large s as z0 � z1=s�O�1=s2�. To satisfy these con-
ditions in the r.h.s. of (18), it proves sufficient to take

 

X
p�0

spc�p �
�
p�

1

4

�
� ��

��1� s
2��

��34�
s

2��
�O�1=g�; (19)

with c�0 � �
1
2 and �� the normalization factor. Putting

s � 0 in both sides of (19), we get �� � 2
��34��
2.

Calculating the Laplace transform
R
1
0 dxe

�x=sz��x� in
the similar manner and imposing the same conditions as
for z��x�, we obtain the second quantization condition

 

X
p�0

sp
�
c�p �

�
p�

3

4

�
� 2c�p

�
p�

1

4

�
�
�
p�

1

4

��
� ��

��1� s
2��

��14�
s

2��
�O�1=g�; (20)

with c�0 � 0 and c�0 � �
1
2 . In comparison with (18), the

Laplace transform of z��x� contains the factorP
1
n�1 an��s�

n �
���
2
p

sin�s2�= sin�3�4 �
s
2� that leads to (20).

As before, putting s � 0 in both sides of (20), we fix the
normalization factor �� �

1
4 
��

1
4��

2. Then, expanding both
sides of the quantization conditions (19) and (20) around
s � 0 and matching the coefficients in front of powers of s,
we determine the coefficients c�p (with p � 1) to the
leading order in 1=g. In this way,
 

c�1 ��
3ln2

�
�

1

2
�O�1=g�; c�1 �

3ln2

4�
�

1

4
�O�1=g�: (21)

Substituting these relations into (11), we obtain �cusp�g�
which coincides with the string theory prediction (1).

To calculate subleading strong coupling corrections
to �cusp�g�, or equivalently to determine the coefficients
c�p , we expand further the Laplace transformsR
1
0 dxe

�x=sz��x� in powers of 1=g and require each term
of the expansion to verify the same analyticity conditions
as the leading term. This can be done systematically by
applying the Euler-Maclaurin formula to the sums over j in
the r.h.s. of (13). In this manner, we obtain the following
all-order quantization conditions

 X
p�0

sp
�
c�p Q

�
p

�
1

gs

�
�

1

gs
c�p Q

�
p�1=2

�
1

gs

��
�

��1� s
2��

��34�
s

2��

X
k�0

�gs��k��k �1=g�;

X
p�0

sp
�
c�p Q�p�1=2

�
1

gs

�
� c�p Q�p

�
1

gs

��
�

��1� s
2��

��14�
s

2��

X
k�0

�gs��k��k �1=g�;

(22)

where ��k �1=g� �
P
r�0�

�
k;rg

�r and the (g-independent) functionsQ�p �x� �
P
k;l�0x

k�lQ2l
k;p; Q�p �x� �

P
k;l�0x

k�lQ2l�1
k;p .

Explicit expressions for the coefficientsQl
k;p follow univocally from the Euler-Maclaurin summation formula, and they are

too lengthy to present them here. For g! 1, the relations (22) coincide with (19) and (20) for ��0 �0� � ��, Q�p �0� �
��p� 1

4�, and Q�p �0� � 2�p� 1
4���p�

1
4�. Expanding both sides of (22) in powers of 1=g and s and matching the

expansion coefficients, we can determine the functions ��k �g� and c�p �g� to arbitrary order in 1=g. Substitution of the
resulting expression for c�p �g� into (11) yields the strong coupling expansion of the cusp anomalous dimension.

4. Strong coupling expansion.—Solving the quantization conditions (22), we calculated �cusp�g� to order O�1=g40�. The
first few terms of the expansion are

 

�cusp�g� c1� � 2g
�

1� c2g
�2 � c3g

�3 � �c4 � 2c2
2�g
�4 � �c5 � 23c2c3�g

�5 �

�
c6 �

166

7
c2c4 � 54c2

3 � 25c3
2

�
g�6

�

�
c7 �

1721

29
c2c5 �

1431

7
c3c4 � 457c2

2c3

�
g�7

�

�
c8 �

6352

107
c2c6 �

12606

29
c3c5 �

7916

49
c2

4 �
6864

7
c2

2c4 � 4563c2c
2
3 � 374c4

2

�
g�8 �O�g�9�

�
; (23)
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where the expansion coefficients are given by
 

c1 �
3 ln2

4�
; c2 �

1

16�2K; c3 �
27

211�3 ��3�;

c4 �
21

210�4��4�; c5 �
43065

221�5
��5�; c6 �

1605

215�6
��6�;

c7 �
101303055

230�7 ��7�; c8 �
1317645

222�8 ��8�; (24)

with ��x� the Riemann zeta function, ��x� �P
n�0��1�n�2n� 1��x the Dirichlet beta function, and

K � ��2� the Catalan’s constant. We verified that the
coefficients (24) are in excellent agreement with the nu-
merical values obtained within the approach of [14].

The reason why in (23) we expanded �cusp�g� c1�

instead of �cusp�g� is that the c1-dependent terms inside
�cusp�g� can be resummed to all orders in 1=g by simply
replacing g! g� c1. A distinguished feature of the series
(23) is that the coefficients in front of 1=gn are given by a
linear combination of the product of ��2p� 1� and ��2r�
such that the sum of their arguments equals n. Let us
compare this with the weak coupling expansion of
�cusp�g�. The latter runs in even powers of g, and the ex-
pansion coefficients only involve products of �-functions
of both even and odd arguments such that the sum of their
arguments equals the order in g [12,19].

We found that, up to order O�1=g40�, all expansion
coefficients of �cusp�g� except the first one are negative.
In addition, at large orders in 1=g, they grow factorially
and the asymptotic expansion is not Borel summable

 �cusp�g� � �g
X
k

��k� 1
2�

�2�g�k
� g

Z 1
0

duu�1=2e�u

u� 2�g
; (25)

with the Stieltjes integral having a pole at u � 2�g. This
indicates that �cusp�g� receives nonperturbative correction
�g1=2e�2�g proportional to the residue at the pole.

Our prediction for the cusp anomalous dimension (23)
relies on the strong coupling expansion of the solution to
the BES equation (2). Eventual verification of (23) remains
a challenge for the string theory. We would like to mention
that our result for c2 � K=�4��2 is in a structural agree-
ment with the (revised) two-loop superstring result of [17]
and in precise agreement with a new superstring compu-
tation (R. Roiban and A. A. Tseytlin, to appear).
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Note added.—After this Letter was submitted, we
learned [J. Maldacena (private communication)] that our
result for nonperturbative corrections to �cusp�g� is in
perfect agreement with the findings of Ref. [20]. As was

shown in [20], �cusp�g� has the interpretation of an energy
density of a certain flux configuration, and, as such, it
receives correction proportional to m2 with m�
g1=4e��g being the mass gap in the O�6� sigma model.
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