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Kerr Black Holes Are Not Unique to General Relativity
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Considerable attention has recently focused on gravity theories obtained by extending general relativity
with additional scalar, vector, or tensor degrees of freedom. In this Letter, we show that the black-hole
solutions of these theories are essentially indistinguishable from those of general relativity. Thus, we
conclude that a potential observational verification of the Kerr metric around an astrophysical black hole
cannot, in and of itself, be used to distinguish between these theories. On the other hand, it remains true
that detection of deviations from the Kerr metric will signify the need for a major change in our

understanding of gravitational physics.
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Black holes are among the most extreme astrophysical
objects predicted by general relativity. They are vacuum
solutions of the FEinstein field equations realized astro-
physically at the end stages of the collapse of massive
stars. According to a variety of no-hair theorems, a general
relativistic black hole is characterized only by three pa-
rameters identified with its gravitational mass, spin, and
charge. Any additional ‘“hair” on the black hole, associ-
ated with the properties of the progenitor star or the col-
lapse itself, are radiated away in the form of gravitational
waves over a finite amount of time.

Black holes might look different if general relativity is
only an effective theory of gravity, valid at the curvature
scales probed by current terrestrial and astrophysical ex-
periments. If the more fundamental gravity theory has
additional degrees of freedom, they might appear as addi-
tional hair to the black hole. This would be important for a
number of reasons. First, additional degrees of freedom
appear naturally in all attempts to quantize gravity, either
in a perturbative approach [1] or within the context of
string theory [2]. Detecting observational signatures of
these additional degrees of freedom in black-hole space-
times would serve as a confirmation of quantum gravity
effects. Second, black-hole solutions not described by the
Kerr-Newman metric may follow a set of thermodynamic
relations different from those calculated by Bekenstein [3]
and Hawking [4] with important implications for string
theory [5]. Finally, the external spacetimes of astrophysical
black hole will soon be mapped with gravitational-wave
[6] and high-energy observations [7] and the means for
searching for black holes with additional degrees of free-
dom will become readily available.

Introducing additional degrees of freedom to the
Einstein-Hilbert action of the gravitational field does not
necessarily alter the resulting field equations and hence the
black-hole solutions. For example, the addition of a Gauss-
Bonnet term to the action leaves the field equation com-
pletely unchanged [1]. Moreover, a large class of gravity
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theories in the Palatini formalism for which the action is a
general function f(R) of the Ricci scalar curvature R, lead
to field equations that are indistinguishable from the gen-
eral relativistic ones [8]. In all these situations, no astro-
physical observation of a classical phenomenon, such as
test particle orbits or gravitational lensing, can distinguish
between these theories. Nevertheless, this leaves a large
number of Lagrangian gravity theories that incorporate
general relativity as a limiting case but are described by
more general field equations.

The most widely studied such extension of general
relativity is the Brans-Dicke gravity, which incorporates
a dynamical scalar field in addition to the metric tensor.
Black-hole solutions in this theory were studied by Thorne
and Dykla [9]. Following a conjecture by Penrose, these
authors showed that the Kerr solution of general relativity
is also an exact solution of the field equations in Brans-
Dicke gravity and offered a number of arguments to sup-
port the claim that the collapse of a star in this gravity
theory will produce uniquely a Kerr black hole. Additional
analytic [4,10,11] and numerical [12] arguments were
offered by other authors providing further evidence for
the uniqueness of the Kerr solution in Brans-Dicke gravity.

In this Letter, we show that black-hole solutions of the
general relativistic field equations are indistinguishable
from solutions of a wide variety of gravity theories that
arise by adding dynamical vector and tensor degrees of
freedom to the Einstein-Hilbert action. Although we do not
prove that the general relativistic vacuum solution is the
unique solution of the extended Lagrangian theories, we
use our results to argue that an observational verification of
the Kerr solution for an astrophysical object cannot be used
in distinguishing between general relativity and other
Lagrangian theories such as those considered here. Note
that we are only considering four-dimensional theories that
obey the equivalence principle, and hence we are not
studying theories with prior geometry [13], that are
Lorentz violating [15], or braneworld gravity theories
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[16]. Although several of these extensions lead to predic-
tions of an unstable quantum vacuum and of ghosts, we are
focusing here on their classical black-hole solutions.

In general relativity, the external spacetimes of black
holes that are astrophysically relevant, i.e., with zero
charge, are completely specified by the relation

R

R,LLV :Zg/u» (1)

with R ,, = 0. Here R, is the Ricci tensor and R is the
Ricci scalar curvature. When the cosmological constant A
is considered to be nonzero, then R = 4A.

It is our aim to show that the external spacetimes of
general relativistic black holes, which satisfy Eq. (1), are
practically indistinguishable from solutions in a number of
gravity theories that arise by adding vector or tensor de-
grees of freedom to the Einstein-Hilbert action

_ 1 4 — o —
s——lwcfdw—g( 2A + R). @)

It is important to make here a distinction between the
external spacetimes of black holes and those of stellar
objects, which also satisfy Eq. (1) in general relativity.
The field equation of a gravity theory is a high-order partial
differential equation and its solutions depend on the bound-
ary conditions imposed. In particular, when solving for the
external spacetime of a stellar object, a number of regular-
ity conditions need to be satisfied at the stellar surface,
inside which the field equations are altered by the presence
of matter. As a result, proving that the external spacetime
of a general relativistic star satisfies the vacuum field
equation of a different gravity theory is not a guarantee
that it will be a valid solution for that theory, as well. It also
needs to meet the altered regularity conditions at the stellar
surface. This issue was recently explored for 1/R gravity in
the metric [17] and in the Palatini formalism [18] with
important implications for the viability of this theory. This
concern, however, is not relevant for black-hole solutions,
in which there is no matter anywhere outside the horizon
and hence no regularity conditions need to be met. Indeed
the vacuum field equation is valid throughout the entire
spacetime accessible to a distant observer and only the
boundary conditions at radial infinity need to be checked.

f(R) gravity in the metric formalism.—A self-consistent
theory of gravity can be constructed for any Lagrangian
action that obeys a small number (four) of simple require-
ments [19]. Of all the possibilities, the field equations that
are derived from the Einstein-Hilbert action (2) are the
only ones that are also linear in the Riemann tensor and
result in field equations that are of second order. However,
any other action f(R) that depends only on the Ricci
curvature scalar will also satisfy the above four require-
ments [20], while being free of the Ostrogradski instability
[21].

The field equation that results from extremizing an
action that is a general function of the Ricci scalar f(R) is

(—R4R,; + guR.,R™)f"(R) + (—Ry + g,OR)f"(R)
+ Ryuf'(R) — 3gif(R) =0, (3)

where primes denote differentiation with respect to R and
we have used the sign convention of Ref. [19].

A general relativistic black-hole solution, i.e., one that
satisfies Eq. (1) with R , = 0, will also be a solution of the
field equation (3) if

LRf'(R) — f(R) = 0. 4

We will now consider nonpathological functional forms of
f(R) that can be expanded in a Taylor series of the form

f(R)=ay+R+aR*+a;R*+ -+ +a,R"+ -,
&)
where we have normalized all coefficients with respect to
the coefficient of the linear term. The Einstein-Hilbert
action is the specific case of Eq. (5) for ay = —2A, and

a,=>» = 0. We can then write the condition (4) for the
existence of a constant-curvature solution as

n—2

a,R" + - = 0.
(6)

There are three cases to consider: (i) If ay = 0, then the
Kerr solution, which corresponds to R = 0, will always be
a solution of the field equations of a general f(R) theory.
Thus, in the absence of a cosmological constant, we con-
clude that the Kerr solution of general relativity remains an
exact solution to all f(R) theories as long as f(R) has a
Taylor expansion of the form in Eq. (5). (ii) Moreover,
independent of the value of ay, all of the constant-curvature
solutions of general relativity in vacuum—including the
Kerr solution—remain exact solutions of the f(R) theory,
if the Taylor series for f(R) terminates after the quadratic
term (i.e., if a,~3; = 0). Indeed, this statement remains
true independently of the value of a,, and thus holds for
both vanishing and nonvanishing cosmological constants.
(ii1) Finally, if ay # 0 and the Taylor expansion extends
beyond the quadratic term, then Kerr-like black-hole solu-
tion will always be possible. The only change is that the
value of its constant curvature will be shifted relative
to the value predicted in general relativity. Since terrestrial
and solar-system tests require any extra nonlinear terms in
the gravity action to be perturbative, this shift in the
curvature will also be correspondingly small. However,
even in this case, it is straightforward to show that the
corrections to the curvature are actually suppressed by
additional powers of the cosmological constant relative to
what might naively have been expected on the basis of
dimensional analysis. For example, given the expansion for
f(R) in Eq. (5), we would have expected the curvature term

—a —1R+laR3+---+
075 7%
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to have a leading correction term which scales as R =
—2ap[1 + O(aga,) +...]. However, explicitly solving
Eq. (6), we find that the true leading correction is actually
given by

R = —2ay(1 + 4ada; +...). (7

Thus the deviations of the vacuum curvature solutions of
f(R) gravity from those of general relativity are particu-
larly suppressed.

f(R) gravity in the Palatini formalism.—In deriving the
field equation (3), we extremized the action of the gravi-
tational field with respect only to variations in the metric.
In the so-called Palatini formalism, field equations of lower
order can be derived from the same action of the gravita-
tional field, by extremizing it over both the metric and the
connection [22]. A large class of f(R) theories in the
Palatini formalism are known to result in the same field
equations as general relativity [8].

Applying this procedure for a gravitational action that is
a general function f(R) of the Ricci scalar curvature, we
obtain the well-known set of equations [22]

Ry f'(R) — Sguf(R) =0, )]

Volv=8f (R)g""]= 0. ©)]

In order to look for constant-curvature solutions in vac-
uum for this theory, we first take the trace of Eq. (8). The
result is simply the algebraic equation (4), which we can
solve for the value of the constant curvature (7) as before.
For a solution with constant curvature, the factor f/(R) in
Eq. (9) is a constant, and the solutions to this equation are
simply the Christoffel symbols of general relativity. As a
result, any general relativistic solution of constant cur-
vature, such as the black-hole solutions with cosmological
constant, will also be solutions (with the same or slightly
different value of the cosmological constant) to the field
equations of an f(R) gravity in the Palatini formalism.

General quadratic gravity.—We shall now consider a
gravitational action that incorporates all combinations of
the Ricci curvature, Ricci tensor, and Riemann tensor, up to
second order, i.e.,

1
=—— | d*x/—g(=2A + R + aR?
167G | 45V 8 “
+ BRU'TRO-T + yRaByBRaﬁya)’ (10)

with «, B, and y the parameters of the theory. Such terms
appear naturally as radiative corrections to the Einstein-
Hilbert action in perturbative approaches to quantum grav-
ity [1] or in string theory [2]. Note, however, that in general
such theories are not free of the Ostrogradski instability
[21].

Because of the Gauss-Bonnet identity, the predictions of
the theory described by the action (10) in calculating
classical properties of astrophysical black holes are iden-
tical to those of the action [23]

=T G[J_( 2A + R+ a'R*> + B'R,.R7),
(1)

where o/ = @ — yand B/ = B + 4y.
The field equation for this action in the metric formalism
is

R,, —3Rgu, + &'K,, + B'L,, + Ag,, =0, (12

where
K,, = —2R,, +2g,,0R—iR*g,, +2RR,,, (13)
L,, = —2R%,, +0OR,, +1g,,0R
— 18uvRoR7™ + 2RYR,,,. (14)

It is trivial to show that, for any black-hole solution
satisfying Eq. (1), K,,, = L, = 0 and the field equation
of quadratic gravity reduces to that of general relativity. As
a result, the Kerr solution is also a solution of the general
quadratic theory considered here.

Vector-tensor gravity.—We finally consider a gravita-
tional theory that incorporates a dynamical vector field in
addition to the metric tensor. A priori, such an addition to
the Einstein-Hilbert action appears to have the highest
probability of requiring black-hole solutions that are not
described by the Kerr metric. This is because the vector
field has the same spin as photons, the geodesics of which
are used to define the event horizon of a black hole. We
restrict our attention to Lagrangian theories that are linear
and at most of second order in the vector field. The most
general action for such a theory is [14]

4 2A + R + wRK, K"
16G_/‘dx1/ g(— )

+ nK*K"R,, — €F,,F*" + 7K, ,K*"),  (15)

with
F,, =K, “

nv

— K0 (16)

The vector field K, at large distances from an object is
meant to asymptote smoothly to a background value de-
termined by a cosmological solution. Note that the values
of the model parameters w, 7, €, and 7 are not indepen-
dent [14].

As in the case of previous investigations of scalar-tensor
gravity [9], we will be seeking vacuum solutions that are
characterized by constant curvature, as well as by a con-
stant vector K - In this case, the field equations that are
derived from the action (15) are [14]

R, —Rg,, + @0W) + 70T + Ag,, =0 (17)

oK, R+ nK*R,, =0, (18)

where K? = K, K",
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0% = K,K,R+ K’R,, —1¢,, KR, (19)
O = 2K*K R, — 2K“K,R o — 3¢, K*KPR 5.
(20)

We now multiply Eq. (18) by K,, combine it with
Eq. (17), and look for the constant-curvature solution (1)
to obtain

[A =301+ 0K?)]g,, — n§(K,K, +3K°g,,) = 0.

21

Contracting Eq. (21) with g*”, we obtain for the
constant curvature

- 16A ~4A|1 - (a) + 3—77)1(2 (@)
4+ (4o + 37n)K? 4

As in the previous cases, a black-hole solution that differs
only in the value of the constant curvature from the general
relativistic one is possible for the vector-tensor gravity
theory that we have considered.

Discussion.—Our results have important implications
for current attempts to test general relativity in the
strong-field regime using astrophysical black holes. On
the one hand, we appear to be lacking a parametric theo-
retical framework with which to interpret observational
data and quantify possible deviations from the general
relativistic predictions for astrophysical black holes. On
the other hand, the detection of deviations from the Kerr
metric in the spacetime of an astrophysical black hole will
be a very strong indication for the need of a major change
in our understanding of gravitation.
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