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We study the exact entanglement dynamics of two atoms in a lossy resonator. Besides discussing the
steady-state entanglement, we show that in the strong coupling regime the system-reservoir correlations
induce entanglement revivals and oscillations and propose a strategy to fight against the deterioration of
the entanglement using the quantum Zeno effect.
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The description of decoherence for bipartite entangled
systems has recently reached notable theoretical [1] and
experimental [2] results due to the introduction of the
concept of entanglement sudden death. This describes the
finite-time destruction of quantum correlations due to the
detrimental action of independent environments coupled to
the two subsystems. On the other hand, it is well known
[3,4] that the interaction with a common environment
leads to the existence of a highly entangled long-living
decoherence-free (or subradiant) state. At the same time,
another entangled state exists (orthogonal to the previous
one, and called superradiant) that loses its coherence faster.
In this Letter, we present a variant of the quantum Zeno
effect that allows us to preserve the superradiant state
without affecting the subradiant one, thus achieving a
complete entanglement survival.

Specifically, we address an exactly solvable model de-
scribing two two-level atoms (qubits) resonantly coupled
to a lossy resonator, which we treat through the pseudo-
mode approach [5]. This model describes both atoms or
ions trapped in an electromagnetic cavity [6] and circuit-
QED setups [7–9], so that our results are directly verifiable
in both systems.

We obtain the exact entanglement dynamics as a
function of the environment correlation time and dis-
cuss its stationary value, which turns out to be maxi-
mal for a factorized initial state of the two atoms. In the
past, the environment induced entanglement genera-
tion has been discussed in the Born-Markov limit [10] or
for a pure dephasing case [11]. Here we extend these
results to a dissipative coupling with the environment
outside the Markovian regime, both for weak and strong
couplings, corresponding to the bad and good cavity
limits. In particular, in the latter regime, the long memory
of the reservoir induces entanglement revivals and
oscillations.

Furthermore, we describe a measurement induced quan-
tum Zeno effect [12] for the entanglement, showing that
the simple procedure of monitoring the population of the
cavity mode leads to a protection of the entanglement well
beyond its natural decay time. This effect too can be tested
with slight modifications of already existing experimental

setups, both in the realm of cavity QED and with super-
conducting Josephson circuits.

We consider a two-qubits system interacting with a
common zero-temperature bosonic reservoir. The micro-
scopic Hamiltonian of the system plus reservoir is given by
H � H0 �Hint, with

 H0 � !1�
�1�
� �

�1�
� �!2�

�2�
� �

�2�
� �

X
k

!kb
y
k bk; (1)

 Hint � ��1�
�1�
� � �2�

�2�
� �
X
k

gkbk � H:c: (2)

Here, bk is the annihilation operator of quanta of the
environment, while ��j�� and !j are the inversion operator
and transition frequency of the jth qubit, j � 1, 2, whose
interaction with the reservoir is measured by the dimen-
sionless constant �j. This depends on the value of the
cavity field at the qubit position and can be effectively
manipulated, e.g., by means of dc Stark shifts tuning the
atomic transition in and out of resonance. For the following
discussion, it will prove useful to introduce a collective
coupling constant �T � ��2

1 � �
2
2�

1=2 and the relative
strengths rj � �j=�T (as r2

1 � r
2
2 � 1, we take only r1 as

independent). By varying �T , we will explore both the
weak and the strong coupling regimes.

For an initial state of the form

 j �0�i � �c01j1i1j0i2 � c02j0i1j1i2�
O
k

j0ki; (3)

the time evolution of the total system is given by

 j��t�i � c1�t�j1i1j0i2j0iE � c2�t�j0i1j1i2j0iE

�
X
k

ck�t�j0i1j0i2j1kiE; (4)

j1kiE being the state of the reservoir with only one excita-
tion in the kth mode. Setting ��j�k � !j �!k, the equations
for the probability amplitudes take the form

 _c j�t� � �i�j
X
k

gke
i��j�k tck�t�; j � 1; 2; (5)

 _c k�t� � �ig
	
k��1e

�i��1�k tc1�t� � �2e
�i��2�k tc2�t��: (6)
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Integrating Eq. (6) and inserting its solution into Eqs. (5),
one gets two integro-differential equations for the ampli-
tudes c1;2�t�. In the continuum limit for the environment,
and by introducing the correlation function f���, and its
Fourier transform J�!� (which is the reservoir spectral
density), these two equations become

 _c 1 � �
Z t

0
dt1f�t� t1���

2
1c1�t1� � �1�2c2�t1��; (7)

 _c 2 � �
Z t

0
dt1f�t� t1���2

2c2�t1� � �2�1c1�t1��: (8)

Before discussing the general time evolution, we notice
that a constant solution can be found, independently of the
form of the spectral density. Namely, a subradiant,
decoherence-free state exists, that does not decay in time

 j �i � r2j1i1j0i2 � r1j0i1j1i2: (9)

In the following, we consider the case in which the two
atoms have the same Bohr frequency, i.e., !1 � !2 � !0,
and interact resonantly with a reservoir with Lorentzian
spectral density J�!� � �W2�=����!�!0�

2 � �2�. This
is, e.g., the case of two atoms interacting with a cavity field
in presence of cavity losses. Because of the nonperfect
reflectivity of the cavity mirrors, the spectrum of the cavity
field displays a Lorentzian broadening. In this case the
correlation function decays exponentially f��� �
W2e���, the quantity 1=� being the reservoir correlation
time. The ideal cavity limit is obtained for �! 0; in this
limit J�!� � W2��!�!0�, corresponding to a constant
correlation function f��� � W2. The system, then, reduces
to a two-atom Jaynes-Cummings model [13] with a vac-
uum Rabi frequency R � �TW. On the other hand, for
small correlation times (with � much larger than any other
frequency scale), we obtain the Markovian regime charac-
terized by a decay rate � � 2R2=�. For generic parameter
values, the model interpolates between these two limits.

As j �i does not evolve in time, the only relevant time
evolution is that of its orthogonal, superradiant, state

 j �i � r1j1i1j0i2 � r2j0i1j1i2: (10)

Its survival amplitude E�t� � h �j ��t�i is given by

 E �t� � e��t=2�cosh��t=2� �
�
�

sinh��t=2��; (11)

where � �
����������������������
�2 � 4R2
p

.
In the fj1i; j0ig basis, the reduced density operator for the

two qubits is given by

 ��t� �
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0 jc1�t�j

2 c1�t�c
	
2�t� 0

0 c	1�t�c2�t� jc2�t�j2 0
0 0 0 1� jc1j

2 � jc2j
2

0BBB@
1CCCA;

(12)

where, letting 	� � h �j �0�i, one has

 c1�t� � r2	� � r1E�t�	�; (13)

 c2�t� � �r1	� � r2E�t�	�: (14)

The solution is exact as we have not performed neither the
Born nor the Markov approximation. We now use this
result to obtain the dynamics of the qubit entanglement
as measured by the concurrence C�t� [14], ranging from 0
(for separable states) to 1 (for maximally entangled ones).
For the density matrix given by Eq. (12), the concurrence is

 C�t� � 2jc1�t�c	2�t�j: (15)

We begin by noticing that there exists a nonzero sta-
tionary value of C due to the entanglement of the
decoherence-free state: Cs � C�t! 1� 

C�j �i�jh �j �0�ij

2 � 2jr1r2jj	�j
2. To better discuss

the time evolution of the concurrence as a function of the
initial amount of entanglement stored in the system, we
consider initial states of the form (3) with

 c01 �

�����������
1� s

2

s
; c02 �

�����������
1� s

2

s
ei
; with � 1� s� 1:

Here, the separability parameter s is related to the initial
concurrence as s2 � 1� C�0�2. Figure 1(a) displays the
stationary concurrence versus r1 and s. Because of the
interaction with the cavity field, initial separable states
�s � �1� become entangled. In fact, for 
 � 0, the maxi-
mum stationary entanglement Cmax

s ’ 0:65 is obtained for
initially factorized states, i.e., s � �1. While the details
depend on the phase 
, the qualitative picture is generic
and essentially independent of 
, apart from the isolated
case of an initial state coinciding with j �i. In such a
situation all of the entanglement initially encoded in the
qubits remains there for long times. For positive rj, this
occurs for 
 � �, see Fig. 1(b).

We now look at the entanglement dynamics in the good
and bad cavity limits, i.e., for R� 1 and R 1, respec-
tively, with R �R=�. In Fig. 2 we show the concurrence
as a function of � � �t in the bad (upper row) and good
(lower row) cavity limits. We compare the dynamics of an
initially factorized state (s � 1) with that of an initially
maximal entangled state (s � 0) for four different values
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FIG. 1 (color online). Stationary concurrence as a function of
the relative coupling constant r1 and of the initial separability s
of the state, for (a) 
 � 0, and (b) 
 � �. In the first case, the
maximum of Cs is achieved for asymmetrical couplings: at r1 ’
0:87 for s � 1, and at r1 ’ 0:5 for s � �1. In the second case
the maximum is achieved for j �0�i � j �i. We point out that
these plots are independent of �.
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of the coupling parameter r1, namely r1 � 0, 1=
���
2
p

, 0.87,
1. The plots for r1 � 0 and r1 � 1 overlap as they both
describe a case in which one of the two atoms is effectively
decoupled. The value r1 � 0:87 corresponds to the optimal
stationary entanglement for s � 1 and 
 � 0. Finally, for
r1 � 1=

���
2
p

the two atoms are equally coupled with the
reservoir. Other values of r1 show qualitatively similar
behavior.

For weak couplings and/or bad cavity, R � 0:1, and for
an initially separable state (s � 1), the concurrence in-
creases monotonically up to its stationary value; whereas,
for initially entangled states, the concurrence first goes to
zero before increasing towards Cs. The strong coupling/
good cavity case R � 10 is more rich and presents entan-
glement oscillations and revival phenomena for every ini-
tial atomic states. One can prove that for maximally
entangled initial states (s � 0) the revivals have maximum
amplitude when only one of the two atoms is effectively
coupled to the cavity field, i.e., for r1 � 0, 1. In this case,
indeed, the system performs damped oscillations between
the states j �i and j �i. On the other hand, for an initially
factorized state, the interaction with the cavity field in the
strong coupling regime generates a high degree of entan-
glement. Indeed, for R � 10, at � � �� ’ 0:31,C attains the
value C� ��� ’ 0:96, at r1 ’ 0:92 (for s � 1) or r1 ’ 0:4 (for
s � �1).

These entanglement revivals are a truly new result due to
the memory depth of the reservoir. Small revivals can
occur in the Markovian regime [15], and in the non-
Markovian regime with independent reservoirs [16]. In
our case, however, the amount of revived entanglement is
huge, being comparable to the previous maximum. This
feature only appears in the strong coupling regime and with
a nonzero environmental correlation time. The surprising

aspect here is that an irreversible process such as the
spontaneous emission is so strongly counteracted by the
memory effect of the environment, which not only creates
entanglement, but also lets it oscillate quite a few times
before a stationary value is reached.

If we express the initial state of the qubits as a superpo-
sition of j �i, that is j �0�i � 	�j �i � 	�j �i, we see
that, while part of the initial state will be trapped in the
subradiant state j �i, another part will decay following
Eq. (11). Thus, as discussed above, the amount of entan-
glement that survives depends on the specific state (and on
the value of the rj). In the following, we present a quantum
Zeno effect for the entanglement and show that this effect
can be used to preserve the initial entanglement indepen-
dently of the state in which it is stored.

We consider the action of a series of nonselective mea-
surements on the collective atomic system, performed at
time intervals T, which have the two following properties:
(i) one of the possible measurement outcomes is the pro-
jection onto the collective ground state j gi � j0i1j0i2,
and (ii) the measurement cannot distinguish between the
states j1i1j0i2 and j0i1j1i2. Any procedure fulfilling these
two conditions will do the job of preserving the entangle-
ment. In particular, one could measure the collective
atomic energy [condition (ii) holds in this case since the
transition frequencies are equal] or, more simply, one could
monitor the state of the cavity: if a photon is found, then the
qubits have necessarily decayed into j gi, while if no
photon is found, then the excitation still resides on the
atoms. This can be done both in cavity QED setups (by
sending a probe atom through the cavity that can absorb the
photon) and with superconducting circuits (by sending a
short measuring voltage pulse to the resonator, similarly to
Ref. [9]).
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FIG. 2 (color online). Time evolution
of the concurrence in the bad cavity limit
(R � 0:1, top plots) and good cavity
limit (R � 10, bottom plots), with
(a) s � 1, and (b) s � 0, both with 
 �
0, for the cases of (i) maximal stationary
value, r1 � 0:87 (solid line), (ii) sym-
metrical coupling r1 � 1=

���
2
p

(dot-
dashed line), and iii) only one coupled
atom r1 � 0, 1 (dotted line). The insets
show the initial quadratic behavior of the
concurrence for R � 0:1.
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The measurements described above disentangle the qu-
bits from the reservoir after each period T. Choosing T
such that h�gj��T�j�gi  1, it is straightforward to prove
that the state j �i is unaffected and that, at the same time,
the decay of j �i is slowed down. Its survival probability
P�N�� �t� � h �j��t�j �i in the presence of N measure-
ments is given by P�N�� �t� � j	��0�j

2 exp���z�T�t�, where
t � NT and with an effective decay rate

 �z�T� � �
log�E�T�2�

T
: (16)

In the limit T ! 0 and N ! 1, with a finite t � NT,
�z�T� ! 0 and the decay is completely suppressed.

Besides affecting the probability P��t�, the projective
measurements also modify the time evolution of the en-
tanglement, whose effective dynamics now depends on T.
Explicitly, the concurrence at time t � NT, after perform-
ing N measurements, is given by
 

C�N��t� � 2j�	�r1e��zt=2 � 	�r2�

� �	�r2e��zt=2 � 	�r1�j: (17)

In Fig. 3 we compare the dynamics of C��� in the absence
and in the presence of measurements performed at various
intervals T for an initially maximal entangled state. Both in
the weak and in the strong coupling regimes (left and right
plots, respectively) the presence of measurements
quenches the decay of the concurrence. Thus, we have
achieved a quantum Zeno protection of entanglement
from the effect of decoherence. Again, decreasing the
interval between the measurements, C�N��t� remains closer
and closer to its initial value. It is worth stressing that this
quantum Zeno effect for the entanglement is not straight-
forwardly predictable, since it crucially depends on the
environmental spectral density and on the resonance con-
dition. In fact an inverse-Zeno effect could be obtained in
some cases, giving rise to an enhanced decay of the en-
tanglement (see, e.g., Ref. [16]).

To sum up, we discussed an exactly solvable model
describing two qubits interacting with a nonideal resonator.
We analyzed in detail the stationary value of the entangle-
ment and its dynamics both in the weak and strong cou-
pling limits, showing that entanglement revivals can appear
due to the finite memory of such an environment. We also
investigated the quantum Zeno effect for this system,
showing that the entanglement can be preserved indepen-
dently of the state in which it is encoded, with the help of
repeated projective measurements. As anticipated above,
our results apply both to cavity QED experiments with
trapped atoms and to the case of superconducting circuits,
with on-chip qubits and resonator. In the first case, it has
already been demonstrated that both atoms and ions can be
confined inside high finesse optical cavities and their quan-
tum states can be fully controlled [6]. In the second case,
quantum communication between two Josephson qubits
has been achieved using a transmission line as a cavity
[8,9].
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FIG. 3 (color online). Time evolution of the concurrence, for
s � 0 and r � 1=

���
2
p

, in the absence of measurements (solid line)
and in the presence of measurements performed at intervals
(a) �T � 5, 1, 0.1 (dashed, dotted, and dot-dashed lines, respec-
tively) with R � 0:1 (weak coupling) and (b) �T � 0:01, 0.005,
0.001 (dashed, dotted, and dot-dashed lines, respectively) with
R � 10 (strong coupling).
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