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2Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-952 Gdańsk, Poland

3Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
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We prove that the correlations present in a multipartite quantum state have an operational quantum
character even if the state is unentangled, as long as it does not simply encode a multipartite classical
probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally
sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our
operational approach leads to natural definitions of measures for quantumness of correlations. It also
reproduces the standard no-broadcasting theorem as a special case.
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The characterization of correlations present in a quan-
tum state has recently drawn much attention [1–6]. In
particular, efforts have been made to analyze whether and
how correlations can be understood, quantified, and clas-
sified as either classical or quantum. Even if such distinc-
tion may not be possible in clear-cut terms, understanding
to some extent the quantumness of correlations is not only
relevant from a fundamental point of view, but also in order
to make more clear the origin of the quantum advantage
[6,7], in fields like quantum computing and quantum in-
formation [8]. Therefore, while entanglement [9] may be
considered the essential feature of quantum mechanics, it is
relevant to study how and in what sense even correlations
present in unentangled states may exhibit a certain quan-
tum character.

In this Letter we provide an operational characterization
of those multipartite states whose correlations may be
considered as completely classical, hence, by contrast,
also of quantumness. We do this in two ways. First, we
consider the process of extracting classical correlations
from a quantum state, and we prove that said correlations
amount to the total correlations if and only if the quantum
state can be interpreted from the very beginning as a
classical joint probability distribution. Second, we con-
sider local broadcasting, i.e., the procedure of locally
distributing preestablished correlations in order to have
more copies of the original state [10]. Again, we prove
that local broadcasting is feasible if and only if the state is
just a classical probability distribution. We further general-
ize the latter approach, showing that what really counts is
the amount of correlations, as measured by mutual infor-
mation. All the results presented here are valid for the
multipartite case, when bipartite mutual information is
substituted by one of its most natural multipartite versions.
For the sake of clarity, we derive them in the bipartite case.

We start by recalling [4,6,13] several definitions that
make clear what we mean when we discuss classicality
and quantumness. A bipartite state � is: (i) separable if it
can be written as

P
ipi�

A
i � �

B
i , where pi is a probability

distribution and each �Xi is a quantum state, and entangled
if nonseparable; (ii) classical-quantum (CQ) if it can be
written as

P
ipijiihij � �

B
i , where fjiig is an orthonormal

set, fpig is a probability distribution and �Bi are quantum
states; (iii) classical-classical (CC), or (strictly) classically
correlated [4,6], if there are two orthonormal sets fjiig and
fjjig such that � �

P
ijpijjiihij � jjihjj, with pij a joint

probability distribution for the indexes (i, j). One could
consider a CC state to correspond simply to the embedding
into the quantum formalism of a classical joint probability
distribution.

Every operation on states, corresponding to a mea-
surement or not, will be described by a trace-preserving
and completely positive �; i.e., � admits an expres-
sion ���� �

P
iKi�K

y
i ,

P
iK
y
i Ki � 1. A (quantum-to-

classical) measurement map M acts as M�X� �P
iTr�MiX�jiihij, where fMig is a POVM, i.e., 0 � Mi �

1 and
P
iMi � 1, and fjiig is a set of orthonormal states. A

measurement map describes a POVM measurement, with
the results written in a classical register (i.e., that can be
perfectly read and copied), thus any POVM corresponds to
a measurement map. Hence, to any bipartite state � and
any POVM fMig (on A, in this case) we can associate a CQ
state �CQ�fMig� � �MA � idB���� �

P
ipijiihij � �

B
i ,

where MA is the measurement map associated to the
POVM, so that pi � Tr�MA

i �� and �Bi � TrA�M
A
i ��=pi.

Similarly, given POVMs fMig and fNjg on A and on B,
respectively, we can associate to � the CC state
�CC�fMig; fNjg� � �MA �N B���� �

P
ijpijjiihij � jji�

hjj, with MA, N B the two local measurement maps
associated to the two POVMs, and pij � Tr�MA

i � N
B
j ��.

Notice that in this case one may always think that the
passage from the initial state � to the CC state
�CC�fMig; fNjg� happens in two separate (and commuting)
steps corresponding to the two local POVMs.

(Quantum) mutual information [(Q)MI] I��AB� of a bi-
partite quantum state �AB is a measure of total correlations,
both from an axiomatic and an operative point of view
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[3,5]. It is defined as I��AB��S�A�	S�B�
S�AB�, where
S�X� � S��X� � 
Tr��X log�X� is the von Neumann en-
tropy of �X. QMI is the generalization to the quantum
scenario of the classical MI for a joint probability distri-
bution fpABij g: I�fp

AB
ij g� � H�fpAi g� 	H�fp

B
i g� 
H�fp

AB
ij g�,

with pAi �
P
jp

AB
ij the marginal distribution for A (simi-

larly for B), and H�fqkg� � 

P
kqk logqk is the Shannon

entropy of the classical distribution fqkg. QMI can be
written as the relative entropy between the total bipartite
state and the tensor product of its reductions, i.e. I��AB� �
S��ABjj�A � �B�, with �X � TrY��XY� and S��jj�� �
Tr���log�
 log���. Thus, QMI is positive, and vanishes
only for factorized states. Most importantly, it cannot in-
crease under local operations (LO), i.e., maps of the form
�A � �B: I��AB� � I���A � �B���AB�� [8]. Operationally,
QMI provides the classical capacity of a noisy quantum
channel when entanglement is a free unlimited resource
[14]. Moreover, in the asymptotic setting I��AB� gives the
smallest rate of classical randomness necessary and suffi-
cient to erase all correlations present in �AB [5].

We will consider two other measures of correla-
tions for a bipartite state, the CQ mutual informa-
tion and the CC mutual information, defined as
ICQ��AB� � maxfMig

I��CQ�fMig��, and ICC��AB� �
maxfMig;fNjgI��

CC�fMig; fNjg��, respectively. The maxima
are taken with respect to (local) measurements. Notice
that both CQ mutual information and CC mutual informa-
tion correspond to the standard QMI of the state after the
application of local measurement maps. ICC corresponds
exactly to the classical MI of the joint classical distribution
pij � Tr�Mi � Nj��. ICQ was considered—though not in
terms of MI—in [3] as a measure of classical correlations,
but one may argue that there is still some quantumness in
the CQ state entering in its definition. ICC was first defined
in [15] and provides the maximum amount of the correla-
tions that are present in the state and that can be considered
classical, in the sense that they can be revealed by means of
local measurements, and in this way transferred from the
quantum to the classical domain (i.e., recorded in classical
registers). We have already seen that MI does not increase
under LO. In [3] this was proved also for ICQ, and the same
holds for ICC, as LO on both sides can be absorbed in the
measurements, making the latter nonoptimal. Indeed,
given a (local) map ��X� �

P
kAkXA

y
k and a POVM

fMig, then f�y�Mi�g, with �y�Mi� �
P
kA
y
kMiAk, is also

a POVM. Moreover, I, ICQ, and ICC are related by LO
themselves and each of them vanishes only for uncorre-
lated states [3,16]. We collect these results in the
following:

Observation 1.—Mutual information functions I, ICQ,
ICC: (i) are nonincreasing under LO; (ii) satisfy I � ICQ �

ICC � 0; (iii) vanish if and only if the state is factorized.
We will prove, with the help of simple lemmas, that all

quantum states, that are not CC from the beginning, con-
tain correlations that are not classical, in the sense made
precise by Theorem 1.

Lemma 1.—Given a CQ state � �
P
ipijiihij � �

B
i , we

have I��� � ICQ��� � ��fpi; �ig�, with the Holevo quan-
tity ��fpi; �ig� � S�

P
ipi�i� 


P
ipiS��i�. Moreover, we

have I��� � ICC��� if and only if the states �Bi commute,
and thus � is CC.

Proof.—To see that I��� � ICQ���, consider on A a
complete projective measurement in the basis comprising
the orthogonal states fjiig. For the given �, one checks that
I��� � ��fpi; �ig�. Moreover, ICC��� is the classical MI
between two parties, where party A sends a state �i labeled
by i with probability pi, and B performs a measurement
that gives outputs j with conditional probabilities p�jji�
[8]. It is known [17] that � is an upper bound to the
classical MI of fpij � pip�jji�g, that is saturated if and
only if the states �i commute, i.e., can be diagonalized in
the same basis. �

Lemma 2.—Given a bipartite state � � �AB and (local)
operations �A, �B, if I���A � �B����� � I���, then there
exist maps ��A and ��B such that ���A � ��B����A � �B��
���� � �.

Proof.—A theorem [18,19] by Petz states that, given two
states �, � and a map ��Y� �

P
iKiYK

y
i , then S��jj�� �

S�����jj����� if and only if there exists a map �� such
that �������� � � and �������� � �. Moreover, the ac-
tion of �� on the support of ���� can be given the explicit
expression ���X���1=2�y�������
1=2X������
1=2��1=2,
where �y�Y� �

P
iK
y
i YKi. With this result, if furthermore

� � �A � �B and � � �A � �B, one easily checks that
�� � ��A � ��B. �

We are now ready to state our first main result.
Theorem 1.—ICC��� � I��� if and only if � is CC.
Proof.—If the state is CC, it is immediate to check that

ICC � I. On the other hand, let us assume I��� � ICC��� �
I��CC�fMig; fNjg��, with �CC�fMig; fNjg� �

P
ijpijjii�

hij � jjihjj for some optimal fMig, fNjg. Thanks to
Lemma 2 we have that there exist maps M� and N �

which invert the measurement maps, i.e., such that � �
�M� �N ����CC� �

P
ijpijM

��jiihij� �N ��jjihjj�. Let
us consider ~�QC � �M� � id���CC� �

P
jp

B
j �

A
j � jjihjj,

where pBj �
P
ipij and �Aj �

P
ipij=p

B
jM

��jiihij�. This
is a QC state such that I�~�QC� � ICC�~�

QC� � ICC��� �
I���, because of Observation 1.(i). Therefore, all �Aj �P
kq
�j�
k j�kih�kj are diagonal in the same basis fj�kig by

Lemma 1. The original state can now be written as � �
P
jp

B
j �

A
j �N ��jjihjj� �

P
rkj�kih�kj � �k, where rk �

P
jp

B
j q
�j�
k and �k �

P
j
pBj q

�j�
k

rk
N ��jjihjj�. Thus we have

found that � is a CQ state with I � ICC, therefore it is
CC, again by Lemma 1. �

We depict here another operational way to characterize
CC states which regards local broadcastability. Given a
state � we say that ~�XY is a broadcast state for � if ~�X �
~�Y � � [11]. In the bipartite scenario � 
 �AB, one can
consider two cuts: one between the copies, and one be-
tween the parties. The latter defines locality. Thus, the
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copies are labeled by X � AB and Y � A0B0, while the two
parties are (A, A0) and (B, B0).

Definition 1.—We say that the state � � �AB is locally
broadcastable (LB) if there exist LO �A: A! AA0,
�B: B! BB0 such that �AA0;BB0 
 ��A ��B���AB� is a
broadcast state for �.

No entangled state is LB, as it cannot be broadcast, in
particular, by LO and classical communication, i.e., by
operations more powerful than LO (see Proposition 1 in
[20]). On the contrary, every CC state is LB by cloning
locally its eigenbasis fjii � jjig. We provide now a condi-
tion for local broadcastability in terms of QMI.

Theorem 2.—A state � 
 �AB is LB if and only if there
exists a broadcast state �AA0;BB0 for � such that I��A:B� �
I��AA0:BB0 �. Any broadcast state satisfying the latter con-
dition can be obtained from � by LO.

Proof.—If � is LB then there exists a broadcast state
� 
 �AA0:BB0 
 ��A ��B���AB�. Since � is obtained
from � by LO, we have that I��� � I���, because of
Observation 1.(i). Moreover, since � is a broadcast state,
� can be obtained from it by local tracing, � � �TrA0 �
TrB0 ����. Therefore, I��� � I��� and we get I��A:B� �
I��AA0:BB0 �. On the other hand, let us now suppose there
exists a broadcast state � for � such that I��A:B� �
I��AA0:BB0 �. We want to show that it can be obtained by
local broadcasting. Indeed, by taking �AA0 � TrA0 and
�BB0 � TrB0 , we have I��� � I��� � I���AA0 ��BB0 � �
����. By applying Lemma 2, we see there are LO �A �

��AA0 and �B � ��BB0 that locally broadcast � into �. �

Given that local broadcastability is related to the exis-
tence of broadcast states with the same MI as the initial
state, we can derive our second main result.

Theorem 3.—A state � 
 �AB is LB if and only if it is
CC. More strongly, there exists a state �AA0BB0 with
I��AB� � I��A0B0 � � I���, that can be obtained from �
by means of LO, if and only if � is CC.

Proof.—Given a LB state � 
 �AB, consider any broad-
cast state � 
 �AA0BB0 satisfying I��� � I���, and let mea-
suring maps M and N be optimal for the sake of ICC���.
Applying M and N on subsystems A and B of �, we
obtain: ~���MA�N B�����

P
ijpijjiAjBihiAjBj��

ij
A0B0 .

Here, pij � Tr�MA
i � N

B
j � 1A0B0�� coincides with the op-

timal classical probability distribution for �, Tr�MA
i �

NB
j ��, because of the broadcasting condition, and �ijA0B0 �

TrAB�MA
i � N

B
j ��=pij. For the same reason, TrAB�~�� �

TrAB��� � �A0B0 � �AB. Thus, I�~�� � I���, and at the
same time

 I�~�� � I�fpijg� 	
X

i

pAi S��
i
A0 � 	

X

j

pBj S��
j
B0 �



X

ij

pijS��
ij
A0B0 �

� ICC��� 	
X

ij

pijI��
ij
A0B0 �; (1)

where pAi �
P
jpij, �

i
A0 �

P
jpij=p

A
i �

ij
A0 (similarly for pBi

and �jB0). The inequality comes from the concavity of en-
tropy:

P
ip
A
i S��

i
A0 � �

P
ijpijS��

ij
A0 � (similarly for B), and

we have used the fact that I�fpijg� � ICC���. Consider now
any other measurement maps ~M and ~N , and let them act
on the (still quantum) systems A0 and B0 of ~�, getting a
state �CC. This corresponds simply to transforming each
�ijA0B0 into some CC state ��ij�CC

A0B0 �f
~Mg; f ~Ng�. Thus, we have

ICC��� � I��CC� � ICC��� 	
P
ijpijI���

ij�CC
A0B0 �f

~Mg; f ~Ng��,
for arbitrary f ~Mg, f ~Ng, because the measurement maps
MA �

~MA0 and N B �
~N B0 may not be the optimal

ones to get ICC���. By the assumptions and by
Theorem 2, � can be obtained from � via local broad-
casting, and by Observation 1.(i) it must be ICC��� �
ICC���. Therefore, we have ICC��� � ICC���. This means
that I���ij�CC

A0B0 �f
~Mg; f ~Ng�� must be zero for any nonvanish-

ing pij. Choosing f ~Mg; f ~Ng repeatedly to be optimal for
every �ijA0B0 , one concludes that it must be ICC��

ij
A0B0 � � 0

for every i, j such that pij > 0, so that, according to
Observation 1. (iii) it must be �ijA0B0 � �ijA0 � �

ij
B0 . More-

over to have equality in (1), it must be that �ijA0 � �iA0 and
�ijB0 � �jB0 , because of the strong concavity of entropy.
Thus, we have found that actually ~� is CC: ~� �
P
ijpij�jiAihiAj � �

i
A0 � � �jjBihjBj � �

j
B0 �. Therefore, the

following sequence of relations holds: ICC��� � ICC�~�� �
I�~�� � I��� � I��� � ICC���, because of Observa-
tion 1. (i) of the classicality of ~�, of the broadcasting
condition ~�A0B0 � �, of the assumption I��� � I���, and
of Observation 1. (ii), respectively. Hence, all the appear-
ing quantities coincide, and, as ICC��� � ICC���, we have
ICC��� � I���. Therefore, according to Theorem 1, � is
also CC.

The essential assumptions used to prove that �AB is CC
are: (i) �AA0BB0 is obtained from � by LO; (ii) I��AB� �
I��A0B0 � � I��AB�. Indeed, thanks to Lemma 2, we get that
then �AB, �AA0BB0 , �AB, �A0B0 are all connected by LO.
Thus, with slight changes in the proof above, one can
obtain the second part of the theorem. �

This result represent a no-local-broadcasting theorem
for quantum correlations as measured by a scalar number,
mutual information. It points out a fundamental difference
between classical and quantum mutual information: corre-
lations measured by the latter cannot be shared, in the local
broadcasting sense, as soon as the involved state does not
simply describe a classical joint probability distribution.
We remark that our result regards single states �AB of a
bipartite system. The standard no-broadcasting theorem
[11] refers to a set of two or more states f�Bi g of a single
systemB, and says that there is a map �: B! AB such that
TrA����i�� � TrB����i�� � �Bi , for all i, if and only if the
states �Bi commute. This latter condition may also be in-
terpreted in terms of classicality of the ensemble of states:
when all �Bi are diagonal in the same basis, they may be
considered as distribution probabilities over different states
of the same classical register. We notice that Theorem 3
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implies the standard no-broadcasting theorem. In order to
see this, let us consider a CQ state � �

P
ipijiihij � �

B
i ,

with pi > 0 for each i. If states f�Bi g can be broadcast, then
also � can be locally broadcast; conversely, our results say
that � is LB if and only if it is CC, i.e., if and only if states
�Bi commute.

All the results can be extended to the multipartite set-
ting, considering the multipartite version of mutual infor-
mation given by I�A1:A2: . . . :An� � S��A1A2...An k �A1

�

�A2
� � � � � �An�, which vanishes if and only if the state

of the n subsystems is completely factorized, and does not
increase under LO. All the other definitions are trivially
extended to the multipartite case: (i) a strictly classical
correlated state is a classical probability multidistribution
embedded in the quantum formalism; (ii) given a state
�A1A2...An , we say that ~�A1A01A2A02...AnA0n is a broadcast state
for � if ~� satisfies ~�A1A2...An � ~�A01A02...A0n � �A1A2...An ; (iii) a
state can be made classical on chosen parties by local
measuring maps; (iv) optimizing mutual information for
the states obtained acting by measuring maps over an
increasing number of parties, gives rise to a whole family
of mutual information quantities. All Theorems remain
valid, as Observation 1 and Lemma 2 are immediately
extended, while Lemma 1 can be generalized to the case
of a state that is classical with respect to all the parties but
one.

In conclusion, we characterized operationally the set of
CC states, i.e., states that correspond essentially to the
description of correlated classical registers. We showed
that they are the only states for which correlations, as
measured by mutual information, can be totally transferred
from the quantum to the classical world. Furthermore, they
are the only states that can be locally broadcast. An even
stronger result was derived in terms of mutual information
alone: correlations, as quantified by such a scalar quantity,
can be locally broadcast only for CC states. Thus, our
results show that also correlations of separable non-CC
states have quantum features, and suggest some natural
ways to quantify such nonclassicality. E.g., one may con-
sider the gap �CC��� � I��� 
 ICC���, or the minimal
difference [21] �b��AB� � min�AA0BB0 I��AA0:BB0 � 
 I��AB�,
between the mutual information of a two-copy broadcast
state �AA0BB0 and of the state �AB itself. Theorems 1, and 2
and 3, respectively, make sure that such quantities are
strictly positive for all non-CC states, and, in particular,
for entangled states. The gap �CC resembles the discord
introduced in [2]: the latter corresponds to the gap I 
 I~CQ,
where ~C means that the measuring map which gives rise to
I~CQ is chosen among complete projective measurements
rather than POVMs, as in the case of ICQ. The value of the
different mutual information measures here considered,
e.g., of ICQ [3], and of the respective gaps, as well as of

�b, is in general hard to compute, but analytical solutions
exist in special cases, e.g., for some CQ states. It is worth
mentioning that ICQ is related to the amount of common
randomness that two parties can distill from a shared
quantum state by means of one-way classical communica-
tion [22]. In this Letter, we have presented fundamental no-
go results for multipartite quantum correlations; we hope
that they will help in searching for new tasks based on
quantum correlations. The actual quantification of quan-
tumness, as well as the specific role of entanglement, will
be treated in a forthcoming publication.
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