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Supersymmetry is assumed to be a basic symmetry of the world in many high-energy theories, but none
of the superpartners of any known elementary particle have been observed yet. We argue that supersym-
metry can also be realized and studied in ultracold atomic systems with a mixture of bosons and fermions,
with properly tuned interactions and single particle dispersion. We further show that in such nonrelativistic
systems supersymmetry is either spontaneously broken or explicitly broken by a chemical potential
difference between the bosons and fermions. In both cases the system supports a sharp fermionic
collective mode similar to the Goldstino mode in high-energy physics, due to supersymmetry. We also
discuss possible ways to detect this mode experimentally.
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Supersymmetry, which is a symmetry that relates bosons
and fermions, became a topic of strong interest in elemen-
tary particle physics after Wess and Zumino constructed
the first ‘‘realistic’’ model [1]. It may play a fundamental
role because the supersymmetry algebra is the only graded
Lie algebra of the symmetries of the S matrix consistent
with relativistic quantum field theory [2]. The supersym-
metric string theory is a unique theory expected to give a
unified description of all interactions in nature [3].
However, none of the superpartners (which have identical
properties except for opposite statistics) of any known
elementary particles have been found in experiments thus
far. Therefore, it is extremely important to study the break-
ing of supersymmetry.

Recent experimental progress in mixtures of ultracold
Bose and Fermi atoms [4] provides an opportunity to
realize and study supersymmetry in such atomic systems.
Theoretically, several different models that exhibit super-
symmetry have been studied. An ultracold superstring
model was constructed [5]. The physical behavior of an
exactly soluble model of one-dimensional Bose-Fermi
mixture was investigated [6]. A general formalism to study
such supersymmetric systems based on coherent state path
integral was set up in Ref. [7]. In a recent work [8], we
studied a supersymmetric Hubbard model and focused on
the Mott insulator phase for bosons.

In this Letter we study some general properties of super-
symmetric Bose-Fermi mixtures, in which bosons and
fermions are supersymmetric partners of each other. We
show that in the presence of time-reversal symmetry, su-
persymmetry is always broken, either spontaneously or
by a chemical potential difference between bosons and
fermions. For a truly supersymmetric grand canonical
Hamiltonian, we find the system contains bosons only
even though the grand canonical Hamiltonian is invariant
under a supersymmetry transformation that turns a boson
into a fermion; in this case supersymmetry is spontane-
ously broken. To support a finite density of fermions, one
needs a chemical potential difference between the bosons

and fermions: �� � �F ��B > 0, which breaks super-
symmetry of grand canonical Hamiltonian explicitly but
keeps the canonical Hamiltonian supersymmetric. We find
in both cases the system supports a sharp fermionic col-
lective excitation similar to the Goldstino mode in super-
symmetric high-energy theories, which is gapless in the
former case while it has a gap equal to �� for the latter.
For simplicity we refer to this Goldstino-like mode as
‘‘Goldstino’’ in the following. We will also discuss its
possible experimental detection.

While our results are general, in the following we illus-
trate them by considering a simple lattice model (in the
grand canonical ensemble) with mixture between a single
species of bosons and a single species of fermions:

 HG � H ��FNF ��BNB; (1)

 H � T̂ � V̂; (2)
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Here ai and fi are the boson and fermion operators on site
i, and nai and nfi are the corresponding number operators;
NB �

P
in
a
i and NF �

P
in
f
i . In the presence of time-

reversal symmetry, all the hopping matrix elements (t’s)
are real; we further assume they are all non-negative so the
hoppings are not frustrated as is usually the case.

We now introduce generators of supersymmetry [9]:

 Q �
X
i

ayi fi; Qy �
X
i

aif
y
i : (5)

It is easy to verify that they satisfy the following relations:
Q2 � �Qy�2 � 0, fQ;Qyg � N � NB � NF, and �Q;N� �
�Qy; N� � 0. From these relations it is clear that Q is a
fermionic operator. Physically Q turns a fermion into a
boson, and Qy does the opposite. While in (5) Q is defined
in 2nd quantized notation, we also need to know its opera-
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tion on a 1st quantized wave function

  �x1; . . . ;xNB ; y1; . . . ; yNF �; (6)

where x and y are the coordinates of the bosons and
fermions, respectively, so that  is symmetric under the
exchange of x’s while antisymmetric under the exchange
of y’s. We find (up to a normalization constant)

 Q �x1; . . . ; yNF � � Sx1;...;xNB ;y1
 �x1; . . . ; yNF �; (7)

 Qy �x1; . . . ; yNF � � Ax1;y1;...;yNF
 �x1; . . . ; yNF �; (8)

where Sx1;...;xNB ;y1
is the symmetrization operator for coor-

dinates x1; . . . ;xNB; y1, and Ax1;y1;...;yNF
is the antisym-

metrization operator for coordinates x1; y1; . . . ; yNF .
Physically, S turns a fermion into a boson by symmetrizing
one fermion coordinate with respect to all boson coordi-
nates, and A turns a boson into a fermion by antisymme-
trizing one boson coordinate with respect to all fermion
coordinates.

If the bosons and fermions have the same dispersion and
interaction strength, namely, tBij � tFij, and UBB

ij � UBF
ij �

UFF
ij , it is easy to show that the canonical ensemble

Hamiltonian H is supersymmetric, i.e.,

 �Q;H� � �Qy; H� � 0: (9)

For completeness we also present a generic example of
supersymmetric H in the continuum, in 1st quantization:

 H01st �
X
i�NB

��r2
xi � V�xi�� �

X
i�NF

��r2
yi � V�yi��

�
X

i<j�NB

U�xi � xj� �
X

i<j�NF

U�yi � yj�

�
X

i�NB;j�NF

U�xi � yj�; (10)

where V is single particle potential and U is two-body
interaction. Of course the 2nd quantized, lattice
Hamiltonian (2) also has a corresponding 1st quantized
form:

 H1st � T̂1st � V̂1st; (11)

where the form of T̂1st and V̂1st can be deduced from
Eqs. (3) and (4). If  �x1; . . . ; yNF � is an eigenwave function
of the Hamiltonian H1st with NB bosons and NF fermions,
thenQ �x1; . . . ; yNF � is an eigenwave function ofH1st with
NB � 1 bosons andNF � 1 fermions with exactly the same
eigenenergy. Similarly, Qy �x1; . . . ; yNF � is an eigenwave
function of H1st with NB � 1 bosons and NF � 1 fermions,
also with exactly the same eigenenergy.

If we further have the same chemical potential for the
bosons and fermions, �F � �B, the grand canonical
Hamiltonian is also supersymmetric:

 �Q;HG� � �Q
y; HG� � 0: (12)

Given the great tunability of parameters in cold atom

systems, we expect such conditions can be reached in a
variety of systems. In the following we discuss consequen-
ces of such supersymmetry when present.

We start by considering the case where HG is super-
symmetric: �Q;HG� � 0. In this case we can prove that the
ground state of HG contains no or only one fermion. Let us
assume the ground state contains more than one fermion,
and has the wave function  �x1; . . . ;xNB ; y1; . . . ; yNF �.
Because of the time-reversal symmetry of HG,  can be
chosen to be real. Now construct a trial state:

 

~ �x1; . . . ;xNB ; y1; . . . ; yNF � � j �x1; . . . ; yNF �j: (13)

Obviously, ~ is non-negative and different from  for
NF > 1, as the latter changes sign under the exchange of
y’s. In fact, ~ is a two-component or ‘‘spin-1=2’’ boson
wave function as it is also symmetric under the exchange
of y’s. Since ~ and  differ in phase only, we find the
potential or interaction energy does not change:
h jV̂1stj i � h ~ jV̂1stj ~ i, because V̂1st depends only on
density but not the phase of wave function. The situation
is different for T̂1st, which is sensitive to the wave function
phase. Because ~ and  are the same for certain configu-
rations (when  	 0) and differ by a � sign for others
(when  < 0), we find the expectation value of every term
in hT̂1sti is either the same for j i and j ~ i or differ by
a � sign. Because ~ is non-negative, and all t’s in T̂ are
non-negative (meaning T̂ only has negative matrix ele-
ments), we find every single term in h ~ jT̂1stj ~ i is non-
positive. We thus have h jT̂1stj i 	 h ~ jT̂1stj ~ i, and as a
result h jH1stj i 	 h ~ jH1stj ~ i. Since in general j ~ i is not
an eigenstate of H1st, and the ground state of such a
spin-1=2 boson system is spin fully polarized [10,11],
from variational theorem we find h jHGj i>E0, where
E0 is the lowest HG eigenvalue for the case with N bosons
and no fermion (here we also used the fact that bosons and
fermions have the same chemical potential). This is in
contradiction with the assumption that j i is the ground
state of HG. We thus conclude that in the ground state NF
can only be 0 or 1 [12].

We now show that the ground states have a double
degeneracy. Assume j 0i is the ground state with NF �
0. We can then construct a different state with NF � 1 and
one fewer boson

 j Gi � Qyj 0i; (14)

which is also an exact eigenstate of HG with exactly the
same energy E0, as guaranteed by supersymmetry (12).
j Gi can be viewed as a zero momentum, fermionic zero
mode of the ground state, which is known as the Goldstino
mode in the high-energy literature.

As a simple example illustrating the results presented
above, consider the special case of noninteracting particles
with all U � 0. For noninteracting bosons we always have
�B � 0 (we measure energy from the bottom of single
particle dispersion) at zero temperature, regardless of bo-
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son number. Supersymmetry of HG requires �F � �B �
0, as a result we can have either no fermion or a single
fermion occupying the k � 0 state (with zero energy) in
the ground state of HG.

It should be clear from the discussion above that not only
the ground states but all eigenstates of HG (except for
vacuum with N � 0) come in degenerate pairs that have
the same total number of particles but differ in fermion
number by one due to (12). The vacuum is special in that it
is the only state that is supersymmetric, as it is annihilated
by both Q and Qy.

We can also construct Goldstino at finite momentum:

 j G�q�i � Ryq j 0i; (15)

by boosting Qy to finite momentum:

 Ryq �
X
i

e�iq
xiaif
y
i �

X
k

akf
y
k�q: (16)

Since the statistics of a single fermion created by Ryq has no
physical consequence, j G�q�i is just like ferromagnetic
spin-wave states for SU�2� bosons [11]; they have exactly
the same dispersion and differ only in statistics. While
j G�q�i is not an exact eigenstate of HG for finite q, it
approaches one in the long-wave length limit q! 0, and
has quadratic dispersion: Eq � E0 / jqj2 [11].

It is appropriate at this point to discuss the relation
between the sharp fermionic collective mode we call
Goldstino here and the Goldstino in high-energy context.
In high-energy context, Goldstino refers to the Goldstone
fermion arising from spontaneous breaking of the global
supersymmetry; it is a Weyl spinor with spin-1=2. In our
nonrelativistic model, the gapless Goldstone fermion mode
is also the result of the spontaneous breaking of the global
supersymmetry. In this sense, they are quite similar. In fact,
if we had a two-component boson system instead of a
Bose-Fermi mixture, we would have a pseudospin ferro-
magnet that breaks SU�2� symmetry, with a branch of
gapless spin-wave mode; the spin-wave mode is the
Goldstone boson associated with breaking of SU�2� sym-
metry. In the Bose-Fermi mixture, the second component is
fermionic, and the SU�2� symmetry becomes supersym-
metry that is generated by the fermionic operator Q. The
difference here is that the Goldstino is a spinless fermion
with quadratic (instead of linear) dispersion, due to the
absence of Lorentz symmetry.

We now turn to the more interesting case in which there
is a finite density of fermions in the ground state j 0i. In
order to sustain this we must have a higher chemical
potential for the fermions, thus �� � �F ��B > 0. ��
can be viewed as a chemical potential for Goldstino; in its

presence the fermionic Goldstino modes are ‘‘filled up’’ to
some Fermi wave vector kF.

In the presence of ��> 0, HG is no longer supersym-
metric; it instead has a nonzero commutation relation with
the supersymmetry generators:
 

�Q;HG� � ��Q;�FNF ��BNB� � ���Q;

�Qy; HG� � ��Qy; �FNF ��BNB� � ��Qy:
(17)

From (17) we can immediately conclude the following:
(i) Qj 0i is an exact excited state with excitation energy
��, and (ii) Qyj 0i � 0, because if it were not null, it
would be a state with negative excitation energy���. We
thus find even though in this case supersymmetry is ex-
plicitly broken by ��, we still have a sharp zero momen-
tum fermionic collective mode generated by Q, which is
now gapped. The situation is somewhat similar to what
happens to a ferromagnet in an external magnetic field: the
field breaks rotation symmetry and opens a spin-wave gap,
but the spin wave remains a sharp collective mode. This is
a ‘‘holelike’’ Goldstino mode since it is created by Q
instead of Qy, which creates a hole in the occupied
Goldstino Fermi sea. The analogous [to Eq. (15)] finite
momentum states are Rqj 0i, which are expected to have
downward quadratic dispersion of the form Eq � E0 �

��� �jqj2.
Again due to (17), all eigenstates of HG except for

vacuum come in pairs whose energies differ by �� and
fermion numbers differ by one. This is because the canoni-
cal Hamiltonian remains supersymmetric.

We now turn the discussion to possible experimental
detection of the Goldstino modes. Normally one would
expect that these modes can only be detected in processes
in which a boson is turned to a fermion or vice versa, as that
is what Qy or Q does. There is no such process that can be
easily engineered in cold atom systems that we are aware
of, except for possible cotunneling processes in which a
fermion leaves the system and a boson enters the system
simultaneously, or vice versa. In the following we show
that in the presence of a Bose condensate, the Goldstino
mode contributes a finite spectral weight to the spectral
function of single fermion Green’s function; as a result it
can be detected through processes that involve a single
fermion. Physically this is possible because in the presence
of a Bose condensate, the boson number is not fixed in the
ground state; as a result a single fermion (hole) can grab a
boson from the condensate and propagate as the Goldstino
mode. To demonstrate this we calculate the overlap be-
tween the fermionic single hole state fq�0j 0i with the
normalized Goldstino mode �1=

����
N
p
�Qj 0i:

 

1����
N
p h 0jQ

yfq�0j 0i �
1����
N
p

X
k

h 0jf
y
kakfq�0j 0i �

1����
N
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�
h 0jf

y
0 f0a0j 0i �

X
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h 0jf
y
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s
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s X
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h 0jf
y
kakfq�0j 0i; (18)
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where N0
B is the number of bosons in the condensate and

nfq�0 � h 0jf
y
q�0fq�0j 0i & 1. When N0

B is macroscopic
(as is the case in the presence of a condensate), a0j 0i ��������
N0
B

q
j 0i, and the first term in (18) dominates the second.

We thus find the zero momentum fermion Green’s function
has finite weight on the Goldstino, and the weight is
approximately N0

B=N, proportional to the condensate den-
sity. As a result the fermion spectral function A�q � 0; !�
has a sharp �-function peak at ! � ��. This is highly
unusual as in electronic or other fermionic systems, one
normally expects sharp (coherent) spectral peak for fermi-
ons with momentum near kF and corresponding energy
near zero in a Fermi liquid, corresponding to Landau
quasiparticles which are well defined only near the Fermi
surface. The sharp, coherent fermion peak at zero momen-
tum and finite energy we find here is a remarkable conse-
quence of the combination of supersymmetry and Bose
condensation, which is unique to such supersymmetric
Bose-Fermi mixtures. Another remarkable property is
that this spectral peak remains sharp at finite temperature
T as long as T is below the Bose condensation temperature
Tc. This is because (17) guarantees that the Goldstino
mode is sharp at any T, while for T < Tc the condensate
density is nonzero, so the fermion spectral function has a
weight (proportional to condensate density) on the
Goldstino mode. We are not aware of any fermionic
mode (like Landau quasiparticles) that remains sharp at
finite T in other contexts. The fermion spectral function at
small but nonzero momentum q will also have finite weight
on the finite q Goldstino mode for T < Tc. This will result
in a spectral peak at ! � ��� �jqj2, whose width goes
to zero as jqj ! 0.

In electronic condensed matter systems, single electron
spectral function can be measured using electron tunneling
or photoemission. In cold atom systems we do not have
equivalent methods (yet). On the other hand, alternative
ways to measure single particle Green’s function or spec-
tral function are currently being developed, like stimulated
Raman spectroscopy [13]. Once these methods become
available, the Goldstino mode with the specific properties
discussed above can be probed through the fermion spec-
tral function, as long as there is a Bose condensate (which
is what bosons tend to form, except at certain commensu-
rate lattice filling). We are thus highly hopeful that super-
symmetric Bose-Fermi mixtures can be studied and the
Goldstino mode can be detected experimentally, and our
predictions can be tested.

We close by stating that we have studied possible real-
ization of supersymmetry in cold atom Bose-Fermi mix-
tures, in a nonrelativistic setting. Our study gives examples
of supersymmetry breaking, both spontaneous and explicit.
In both cases the system supports a sharp, collective fer-
mionic excitation which is a Goldstino-like mode; we have
discussed ways to detect it experimentally as an unambigu-
ous signature of supersymmetry. We hope such a study can
provide hints to the mechanism of supersymmetry break-

ing in relativistic quantum field theories, in which the su-
persymmetry algebra is usually a graded Poincaré algebra
because of the linear dispersion of the relativistic fermion
and that the boson is of the Klein-Gordon type. As a result
the anticommutation relation between the supercharge and
its Hermitian conjugate is the Hamiltonian in that case,
instead of the total particle number in the present work.
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