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Supersolid Phase Induced by Correlated Hopping in Spin-1/2 Frustrated Quantum Magnets
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We show that correlated hopping of triplets, which is often the dominant source of kinetic energy in
dimer-based frustrated quantum magnets, produces a remarkably strong tendency to form supersolid
phases in a magnetic field. These phases are characterized by simultaneous modulation and ordering of the
longitudinal and transverse magnetization, respectively. Using quantum Monte Carlo and a semiclassical
approach for an effective hard-core boson model with nearest-neighbor repulsion on a square lattice, we
prove, in particular, that a supersolid phase can exist even if the repulsion is not strong enough to stabilize
an insulating phase at half-filling. Experimental implications for frustrated quantum antiferromagnets in a
magnetic field at zero and finite temperature are discussed.
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The identification of exotic states of quantum matter in
microscopic models is an important issue in current re-
search on strongly correlated quantum systems. The exis-
tence of a supersolid (SS) that simultaneously displays
crystalline order (solid) and long-range phase coherence
(superfluid, SF) has been definitely established recently
thanks to extensive quantum Monte Carlo (QMC) simula-
tions of a hard-core boson model with nearest-neighbor
(NN) repulsion on the triangular lattice in the context of
cold atoms loaded into optical lattices [1-3]. The possi-
bility to realize a supersolid phase in dimer-based quantum
magnets, first pointed out by Momoi and Totsuka in the
context of SrCu,(BOj3), [4], has been further investigated
very recently [S—7]. It relies on the description of a polar-
ized triplet on a dimer as a hard-core boson, a convenient
language we will mostly use throughout this Letter. Some
trends have already emerged. In particular, for a supersolid
to be realized, triplets induced by the magnetic field should
have a small kinetic energy as compared to their mutual
repulsion. In SU(2) models, this can be achieved if the
interdimer coupling is frustrated, as noticed in the context
of magnetization plateaux early on [8] and pointed out
recently for supersolids by Sengupta and Batista [6]. This
is not the whole story, however. First of all, even if the
kinetic energy is small, the transition between insulating
and superfluid phases can be first order, thus preempting
the possibility of a supersolid phase. This is, for instance,
the case of hard-core bosons with NN repulsion on the
square lattice [9], in contrast to the results of Refs. [1-3] on
the triangular lattice. Besides, when the hopping of a single
triplet is strongly suppressed by frustration, the kinetic
energy is not always suppressed accordingly. Indeed, cor-
related hopping terms much larger than single-particle
hopping are often generated. To see this, suppose, for
instance, that dimers are locally arranged as in Fig. 1
with J' < J, a situation typical of frustrated magnets.
The amplitude for a triplet to hop from dimer 1 to 2 is
strictly equal to 0, while the amplitude to hop from 1 to 3 is
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equal to J?/2J if dimer 2 is occupied by a triplet, as first
pointed out in Ref. [10]. In two-dimensional arrangements
of frustrated coupled dimers, single-particle hopping does
not strictly vanish, but only appears at much higher order in
perturbation [sixth order for the Shastry-Sutherland model
realized in SrCu,(BO;),], while correlated hopping is
typically a second order process [11]. So the problem of
hard-core bosons with correlated hopping calls for further
investigation.

In this Letter, we show that supersolidity is strongly
favored in dimer-based frustrated magnets because corre-
lated hopping is the principal source of kinetic energy. The
bottom line of our analysis can be summarized as follows:
Under the effect of correlated hopping, a triplet cannot
delocalize if it is alone, but it can in a crystalline arrange-
ment of triplets with the appropriate geometry. In particu-
lar, if an insulating phase with a geometry compatible with
correlated hopping is realized at commensurate filling, one
may expect that upon adding particles, the crystalline order
will be retained, leading to a supersolid phase. As we shall
see, this simple mechanism gives rise to a tendency toward
supersolidity, which is much stronger than anticipated; in
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FIG. 1. Difference between single and correlated triplet hop-
ping in a frustrated geometry. (a) Spin language: thick solid
(dashed) lines stand for dimer triplet (singlet), thin solid lines for
interdimer coupling. (b) Bosonic language: filled (open) circles
denote hard-core boson sites that are occupied (empty).
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fact, it is so strong that a supersolid phase can exist even if
the corresponding solid phase cannot be stabilized.

These conclusions are based on an extensive investiga-
tion with stochastic series expansion (SSE) [12,13] quan-
tum Monte Carlo (QMC) simulations and with a
semiclassical approximation (SCA) of a minimal model
of hard-core bosons on the square lattice defined by the
Hamiltonian:

H= —tZ(blTbj + Hec) + VZninj - ,U,Zn,»
(i ) i
-y nilbl, shivs + Hel, (1)
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where n; = b:rb,- € {0, 1} is the boson density at site i, u
the chemical potential, 7 the NN hopping amplitude, ¢’ the
amplitude of the correlated hopping, and V the NN repul-
sion. The correlated hopping term describes a process
where a particle can hop along the diagonal of a square
plaquette provided there is a particle on one of the other
two sites of the plaquette. In the context of weakly coupled
dimers with intra- and interdimers exchange J and J/, t can
be arbitrarily small, V is of order J/, ¢ is of order J'?/J, and
u = gugH — J + O(J') [4]. Throughout this Letter, the
energy scale is fixed by ¢ + ¢ = 1.

The case without correlated hopping (# = 0) has already
been investigated thoroughly [15]. For strong enough re-
pulsion, an insulating phase with checkerboard (CB) order
appears at half-filling. The phase diagram is symmetric
about n = 1/2 in that case due to particle-hole symmetry,
and the transition from the solid to the superfluid phase is
first order with a jump in the density [9]. So, there is no
supersolid phase in the absence of correlated hopping. In
the following, we study how this picture is modified when
correlated hopping is introduced.

Let us first briefly review some technical points. In SSE
QMC simulations, the various bosonic phases can be de-
termined by studying the density n, the static structure
factor at the wave vector (77, 7) relevant for the checker-
board solid
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ij
and the superfluid stiffness
1
= W2+ W2), 3
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which signals the presence of a SF phase. Here W, and W,
are the total winding numbers in x and y directions. If both
order parameters S(77, 77)/N and pg are finite in the ther-
modynamic limit, the system is in a SS phase.

The SCA [16] relies on a mapping onto a S = 1/2 spin
model using the Matsubara-Matsuda [17] representation of
hard-core bosonic operators bt = S~, b = ST, and 57 =
1/2 — n . Note that the correlated hopping term transforms
into a three-spin term. The energy, including zero-point

fluctuations around the possibly noncollinear classical
ground state [18] calculated within linear spin-wave the-
ory, is then minimized assuming a 4-site unit cell to allow
for broken translational symmetry. The superfluid phase
corresponds to a ferromagnetic state with a nonzero com-
ponent in the xy plane, the checkerboard solid phase to
Néel order with wave vector (7, 7r) and with all spins
parallel to the z direction, while the supersolid phase
discussed below is close to Néel order, but the spins
acquire a small ferromagnetically ordered nonzero compo-
nent in the xy plane. As a thumb rule, the approximation is
expected to be qualitatively and semiquantitatively reliable
provided the mean value of the local number of Holstein-
Primakoff bosons is small compared to 25, which is the
case here.

We now explore the phase diagram using both methods
by first considering a case where correlated hopping domi-
nates (¢ = 0.95). The phase diagram in the (1/V, u/V)
plane deduced from QMC simulations and from the SCA is
summarized in Fig. 2, while simulation results for V = 2.2
(1/V = 0.45) are shown in the left panel of Fig. 3. Two
features of this phase diagram are striking: First of all, the
large V (small 1/V) region is dominated by a very large
supersolid phase that appears for densities above 1/2.
Second, this supersolid phase extends far below the critical
value VEB = 2,38 (1/VEB = 0.42) for the development of
CB order, down to V35 = 1.74 (1/V3S = 0.57). In other
words, with correlated hopping, a supersolid phase can
exist without a neighboring solid phase as w is changed.
For frustrated quantum antiferromagnets, this implies that
supersolid phases can show up even in the absence of
magnetization plateaus. Note that correlated hopping ap-
pears to be crucial for this physics to be realized. Single-

10

Empty
2 . 1 . 1 . 1 . 1 . 1 . 1
0 0.1 0.2 0.3 0.4 4 0.5 20.6
1V 1/VCCB 1/Vcss

FIG. 2 (color online). Zero-temperature phase diagram for
' = 0.95 as a function of the 1/V versus wu/V. Open squares
(closed circles) denote first (second) order phase transitions
deduced from QMC data. Thin dotted lines are SCA results.
The other lines (solid and thick dashed lines for second and first
order transitions, respectively) are obtained by interpolating
between numerical data. The data for low densities including
the paired superfluid (PSF) have been taken from Ref. [23].
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FIG. 3 (color online). Bosonic phases revealed by (a) the
density n, (b) the static structure factor S(ar, 7)/N, and (c) the
superfluid stiffness p as a function of the chemical potential for
two representative cases. Left panel: # = 0.95 and V = 2.2
(1/V = 0.455). Right panel: # =0.75 and V=28 (1/V =
0.36). SF stands for superfluid, CB for checkerboard solid, and
SS for supersolid.

particle further-neighbor hopping has been recently shown
to induce supersolid phases near different kinds of solid
phases [19], but, as far as we can tell, never to stabilize a
supersolid phase without an adjacent solid one.

Upon increasing the chemical potential w, the SF-to-
solid and SF-to-SS transitions are first order, while the SS-
to-SF and solid-to-SS transtions are second order, as illus-
trated in Fig. 3. Interestingly, the SCA and the QMC
simulations agree on this point, as well as on the overall
structure of the phase diagram. The SCA clearly over-
estimates the extent of the supersolid phase, but it correctly
predicts that it extends below Vcg. This is an important
remark for more realistic models with possibly positive
correlated hopping amplitudes. In that case, QMC simula-
tions will not be possible due to the minus sign problem,
but the SCA can be expected to be qualitatively reliable.

Next, we investigate how this large supersolid phase
evolves from the case without correlated hopping (¢ =
0), where there is no supersolid at all. We consider an
intermediate value of the repulsion (V = 2.8) and follow
the evolution of the 7 = 0 phase diagram as a function of
#'. The results in the plane (7, ) are plotted in Fig. 4. This
phase diagram has been obtained with QMC simulations
on lattices with up to (24 X 24) sites using inverse tem-
peratures 8 = 2L. The finite size effects are remarkably
small, as illustrated in the right panel of Fig. 3, where the
results for # = 0.75 obtained on different clusters for n,
S(ar, 7r), and pg are plotted as a function of w.

A striking feature of this phase diagram is the strong
asymmetry introduced by correlated hopping compared to
the particle-hole symmetric situation when ¢ = 0. When
correlated hopping is introduced, the phase separation
above the plateau is rapidly replaced by a supersolid phase,
which grows continuously to extend over all the high
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FIG. 4 (color online). Zero-temperature phase diagram for
V = 2.8 as a function of the correlated hopping ' versus the
chemical potential . Open squares (closed circles) denote first
(second) order phase transitions deduced from QMC data. All
the lines have been obtained by interpolating between numerical
data. Thin dotted lines and the boundaries to the empty and full
systems are SCA results.

density region when only correlated hopping is present.
In contrast, phase separation persists below the solid phase
for all values of #'.

The quantum phase transition between the solid and the
SS falls into the conventional SF-insulator universality
class, as expected since the gapped excitations of the solid
order are not expected to influence the nature of the quan-
tum phase transition, and in agreement with the results
recently reported for a spin model [7]. By contrast, the
transition between the SS and the SF at zero temperature is
first order below # = (.25, and seems to be continuous
above. For the sizes available, the extracted critical expo-
nents are consistent with the continuous transition being in
the 3D Ising universality class. This might be a finite size
effect though: The long-wavelength gapless excitations of
the SF phase are expected to change the universality class
of this quantum phase transition [20], and could therefore
give rise to a crossover phenomenon at large length scales.

Next we discuss the thermal transitions of the supersolid
phase. In general one expects two melting transitions for a
SS: a Kosterlitz-Thouless (KT) transition when the SF
stiffness vanishes, and an another one when the solid order
melts whose universality class depends on the type of order
[21]. This question has already been addressed, first for
hard-core bosons on the triangular lattice [22], then for a
spin model with anisotropic exchange integrals [7]. In both
cases, two phase transitions have indeed been observed. In
the case of the spin model, closer to the present case since
the melting of the solid is in the Ising universality class, the
KT transition has been found to lie always below the Ising
transition, suggesting that the supersolid needs a solid
phase to develop. In the present case, we expect the situ-
ation to be quite different since at zero temperature a
supersolid can exist without a solid. This is confirmed by
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netization is expected to show only a very weak anomaly
(if any), it would be very interesting to perform systematic
specific heat measurements of frustrated dimer antiferro-
magnets in high field and at very low temperature to try to
detect ordering in a region where the magnetization does
not exhibit any plateau. It is our hope that this Letter will
stimulate such investigations.
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National Funds and the MaNEP for financial support and
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FIG. 5 (color online). (a) Thermal melting of the supersolid for
t' = 0.75 and V = 2.8: Binder ratio (empty black symbols) and
superfluid stiffness (filled blue symbols) as a function of tem-
perature for u = 6 (upper panel) and x = 10 (lower panel). The
location of the melting transitions are marked by vertical dashed
lines. (b) Finite-temperature phase diagram as a function of the
chemical potential for # = 0.75 and V = 2.8 (1/V = 0.36).
(c) Same as (b) for  =0.95 and V = 2.2 (1/V = 0.455). In
(b) and (c), lines are interpolations between numerical data, and
error bars are smaller than the symbols.

our investigation of the two representative cases for which
zero-temperature data have been shown in Fig. 3: ¥ = 0.75
and V = 2.8 [Figs. 5(a) and 5(b)] and ¥ = 0.95 and V =
2.2 [Fig. 5(c)]. For the first case, we indeed find two
transition lines that both smoothly go to 7' = 0 upon
approaching either the solid phase (KT) or the SF phase
(Ising). They cross in the middle of the SS phase, defining a
region close to the solid where the KT transition is below
the Ising one, as in Ref. [7], but also a region close to the
SF where the Ising transition is below the KT one. This is
even more dramatic for the second case of Fig. 5(c), where
the melting of the Ising order occurs entirely inside the
superfluid phase.

Finally, let us comment on the experimental implica-
tions of these results. Whenever correlated hopping domi-
nates, one can reasonably expect to find supersolid phases,
even in regions where no plateau has been detected. In
SrCu,(B0Oj3),, such a large domain exists between the 1/8
and 1/4 plateaux, in a field range accessible to NMR, a
technique well suited to detect lattice symmetry breaking.
Even if experiments such as NMR, which are almost al-
ways done in steady field, cannot be performed, our results
firmly establish the presence of two phase transitions, the
melting of the solid often taking place below the KT
transition if correlated hopping is present. Since the mag-
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