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We report various types of coherent structures in suspensions of spherical particles swimming in a
monolayer. We solve the fluid dynamics precisely from far-field hydrodynamic interactions to lubrication
between two near-contact surfaces. The simulation results clearly illustrate that coherent structures, such
as aggregation, mesoscale spatiotemporal motion, and band formation, can be generated by purely

hydrodynamic interactions.

DOI: 10.1103/PhysRevLett.100.088103

Systems of swimming organisms exhibit an interesting
variety of collective behavior such as clustering and mi-
gration; examples include schools of fish and coherent
structures of swimming bacteria. In the case of swim-
ming microorganisms, the collective motions may be gen-
erated passively as a result of hydrodynamic interactions.
Ishikawa and Hota [1] showed for interacting Paramecium
caudatum cells that most swimming cell interactions are
hydrodynamic. Even when the collective motions are gen-
erated passively, it is still important to discuss whether the
collective motions are biologically and evolutionarily fa-
vorable or not in various conditions. Recently, there has
been increasing interest in the collective dynamics of
swimming bacteria, because some species of bacteria
show spatiotemporally coherent structures [2,3]. It is also
reported experimentally that self-diffusion in such suspen-
sions is considerably enhanced by the coherent structures
[4]. Moreover, in older studies using magnetotactic bac-
teria, it was observed that thousands of cells form a stable
band perpendicular to the swimming direction [5].

In this work we report various types of coherent struc-
tures that arise from computations of monolayer suspen-
sions of swimming particles in order to improve our
understanding of the experimental observations. We em-
ploy a simple model of swimming microorganisms; how-
ever, we solve the fluid dynamics precisely from far-field
hydrodynamic interactions to lubrication between two
near-contact surfaces. Though the number of particles we
can deal with in the system is limited by this precise
treatment, we can see the effect of near-field fluid dynam-
ics on the collective motions. We also allow for bottom-
heaviness of the microorganisms, leading to external gravi-
tational torques when the cells are not oriented vertically
[6]. The simulation results clearly illustrate that various
coherent structures, such as aggregation, mesoscale spatio-
temporal motion, and band formation, can be generated by
purely hydrodynamic interactions.

In previous studies, the collective motions of locomotive
particles, such as aggregations, coherent motions, and
ordered motions, have been modeled in various ways. In
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Vicsek’s model [7], locomotive particles are driven at a
constant speed and they are oriented parallel to the average
direction of the surrounding particles with some random
perturbation added. Ramaswamy and co-workers [8,9]
constructed hydrodynamic equations for suspensions of
self-propelled particles by adding a distribution of force
dipoles caused by the locomotive particles. In Hernandes-
Ortiz’s model [10], the swimming motion of bacterium was
modeled by two point forces, corresponding to the flagel-
lum force and to the drag force. Most recently, Saintillan
and Shelley [11] used slender-body theory to investigate
orientational order in suspensions of self-locomoting rods.
Although the results obtained from these former studies are
suggestive and consistent with experimental observations,
they did not treat near-field fluid dynamics precisely. Our
former studies [1,12] revealed, however, that near-field
fluid dynamics play an important role in the orientational
change of microorganisms. Thus, in this Letter, we solve
both far- and near-field fluid dynamics precisely and per-
form Stokesian-dynamics simulation of swimming parti-
cles for the first time.

A swimming microorganism is modeled as a squirming
sphere with prescribed tangential surface velocity, which
will be referred to as a squirmer [12,13]. The squirmer is
assumed to be neutrally buoyant, but the center of gravity
of the spherical cell may not coincide with its geometric
center (bottom-heaviness), as shown in Fig. 1. We assume
that the flow field around the microorganisms is Stokes
flow, and Brownian motion is not taken into account. The
surface of the spherical squirmer is assumed to move
purely tangentially and these tangential motions are as-
sumed to be axisymmetric, time independent, and invariant
during the interactions. The surface velocity of a squirmer
u, was analyzed by Blake [14] and is given by

r

2 2 e'rr ,
u, = I;n(n - 1)B,,< —- e)Pn(e -r/r), (1)

where e is the orientation vector of the squirmer, B,, is the
nth mode of the surface squirming velocity, P, is the nth
Legendre polynomial, r is the position vector, and r = |r].

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.100.088103

PRL 100, 088103 (2008)

PHYSICAL REVIEW LETTERS

week ending
29 FEBRUARY 2008

I g

FIG. 1. A sketch of the arrangement of a bottom-heavy
squirmer. Gravity acts in the g direction, while the squirmer
has orientation vector e. G is the center of gravity. Gray arrows
schematically show the squirming velocity on the surface.

The swimming speed of a solitary squirmer is 2B, /3. We
denote by S the ratio of second mode squirming to first
mode squirming, i.e., 8 = B,/B;. It should be noted that
B,, and hence B, can have either sign. A squirmer with
positive B is a puller, analogous to a microorganism for
which the thrust-generating apparatus is in front of the
body, as for biflagellate algae such as Chlamydomonas,
whereas a squirmer with negative 3 is a pusher, i.e., the
thrust is generated behind the body, as for bacteria or
spermatozoa. We show the results for —5 = 8 =15 in
this paper.

The Stokesian-dynamics method [15] is employed in
order to simulate dynamic motions of squirmers in an
infinite suspension. The hydrodynamic interactions among
an infinite suspension of particles are computed by the
Ewald summation technique. By exploiting the
Stokesian-dynamics method [15], the force F, torque L,
and stresslet S balances of squirmers are given by

F U—(u)
L |=[R™ - R + R} Q — (o)
S —(E)
—2Bje+Qy Fuear
+[Rfr — R 0 + | L |, (2)
—iB,(3ee —1) Saear

where R is the resistance matrix, U and € are the trans-
lational and rotational velocities of a squirmer, (u) and {w)
are the translational and rotational velocity of the bulk
suspension, and (E) is the rate of strain tensor of the bulk
suspension. Q is the irreducible quadrupole providing
additional accuracy, which is approximated by its mean-
field value (cf. [15]). Index far or near indicates far- or
near-field interaction, and 2B or sq indicates interaction
between two inert spheres or two squirmers, respectively.
A simplified version of this method was reported in [16],
and the derivation of Eq. (2) is explained fully in [17].

We calculate interacting squirmers’ motion in a fluid
otherwise at rest swimming in a monolayer, in which all
squirmers’ centers and orientation vectors are on the same
x-y plane though the flow field is fully three-dimensional.
Restriction to a monolayer configuration is a very strong
limitation. But some of the aforementioned experimental
observations are also restricted in some way; for instance,
the collective motions were restricted by a plane wall in
[2], and the motions are restricted to a 2D film in [3,4].
Another advantage of the monolayer configuration is that
one can deal with a larger computational domain than a
fully three-dimensional configuration. Since the number of
particles we can include in the system is limited due to the
precise treatment of hydrodynamic interactions, this ad-
vantage is crucial. In order to treat the monolayer configu-
ration we will follow the method employed by Dratler and
Schowalter [18]. The computational region is a square of
side H, and a suspension of infinite extent is modeled with
periodic boundary conditions in the x and y directions. The
monolayer is periodically replicated also in the z direction
with 10H intervals, in order to maintain the positive-
definite mobility matrix. We have considered three differ-
ent cases, with a particle number N = 100 for ¢, = 0.1,
144 for ¢, = 0.3, and 196 for ¢, = 0.5, where ¢, is the
areal fraction of particles in the monolayer.

Movement of non-bottom-heavy squirmers with 8 =5
is computed for random initial positions and orientations.
The distributions of squirmers in one realization for ¢, =
0.1 and 0.5 are shown in Fig. 2, where the velocity vectors
of squirmers are shown as arrows on spheres. It is found
that clusters are formed in these cases, and some squirmers
in the cluster move together and generate collective mo-
tions. In order to clarify the scale of the collective motions,
we calculate the velocity correlation among particles,
Iy(r), as shown in Fig. 3 for the three cases ¢, = 0.1,
0.3, 0.5. I is positive when r < 6, showing that neighbor-
ing squirmers tend to swim together in a similar direction.
The results show anticorrelation when 10 < r, so squirm-
ers more than 10 radii apart swim in opposite directions on
average; this defines the typical scale of the coherent
structures. We should note that the scale of the coherent
structures for ¢, = 0.5 increases slightly as the domain
size increases, though it does not affect the coherent struc-
tures qualitatively. In Dombrowski’s experiment [2] using
rod-shaped bacteria of size 4 X 0.7 um, they observed
anticorrelation when 50 um < r. In Mendelson’s experi-
ment [3] using the same bacteria, they observed whirls,
each approximately 1000 wm?. The whirl structure ap-
pearing in the present study is smaller than these experi-
ments. However, the collective motions observed in the
present study occur randomly in time and in space, and
these tendencies show good qualitative agreement with
previous experiments.

Figure 4 shows the effect of B8 on the length of the
orientation vector averaged over all squirmers, referred to
as e,,. e,, can be large when 8 = %1, which indicates that
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FIG. 2. Velocity vectors relative to the average squirmer velocity (8 = 5). The computational cell is located at the center as indicated

by the solid lines.

squirmers tend to swim in a similar direction. Though we

did not observe a significant effect of the domain size on
the value of e,,, an effect may appear in very large do-
mains, due to the possible instability of the ordered motion.
e, is small and fluctuates frequently when 8 = £5, which
indicates that squirmers orientate chaotically and tend to
change their orientation frequently. (The results for 8 =
—5 are omitted from Fig. 4, because they considerably
overlap those for 8 =35.) Random perturbation in the
squirmer orientation increases as | 8| is increased, because
hydrodynamic interactions between squirmers become

stronger (cf. [19]).
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Bottom-heavy squirmers tend to swim upwards. The dis-

tribution and velocity vectors of squirmers, relative to the

erage velocity, are shown in Fig. 5 [2mpgah)/(uB,) =

100 and B = 1, where p is the density, a is the radius, w is
the viscosity, and 4 is the distance between the geometric
center and the center of gravity]. Though initially squirm-
ers are placed randomly, they tend to form a large band

rpendicular to the gravitational direction in this case. We
served that squirmers on the top side of the band tend to

swim away from the tip, and squirmers on the bottom side
tend to swim toward the tip, which generates a pair of large

rotational motions. The band formation appearing in this
study is similar to the band formation observed in swim-
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FIG. 3. Correlation of the velocity of squirmers with 8 =5

under ¢, = 0.1, 0.3, and 0.5 conditions.
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FIG. 4. Effect of 8 on the time change of the length of

squirmer averaged orientation vectors for ¢ = 0.3.
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FIG. 5. Velocity vectors of bottom-heavy squirmers with 8 =
1, relative to the average squirmer velocity (¢, = 0.3).
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ming magnetotactic bacteria [5]. There are two kinds of
dipole acting on a magnetotactic bacterium: the magnetic
dipole due to permanent magnetic particles in a cell and the
hydrodynamic force dipole due to the swimming motion of
a cell. Carlile et al. [20] speculated that band formation
resulted from the magnetic interaction. However, Guell
et al. [21] suspected that it resulted from the hydrodynamic
interaction. In the present study, we observed the band
formation only when B is positive (8 for bacteria is
negative). Although a squirmer models only the leading-
order flow singularity (stresslet) of a bacterium, our results
appear to conflict with Guell’s hypothesis.

We have shown various types of coherent structures in
suspensions of swimming particles, such as aggregation,
mesoscale spatiotemporal motion, and band formation.
The simulation results clearly illustrate that they can be
generated by purely hydrodynamic interactions. It is worth
adding that fully three-dimensional simulations, not re-
stricted to a monolayer, have also been performed

[17,19] and do not show such dramatic coherent structures:
2D and 3D suspensions are quite different.
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