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The results of phase-field simulation of domain structures (DSs) in ferroelectric nanorods of different
shapes and sizes are presented. It is shown that equilibrium DSs consist of an electrostatically compatible
circuit of 180� and 90� domains. A DS in a thin rod contains 90� cubic elastic domains. The trend to
minimize the residual stress and the stray field results in the formation of crater-shaped sets of closed
circuits of 90� domains, which can be mechanically incompatible but able to maintain electrostatic
compatibility during the evolution under an applied electric field.
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The interest in nanoferroelectrics has dramatically in-
creased in the last decade [1,2]. While there are numerous
theoretical studies of domain structures (DSs) in ferroelec-
tric nanofilms, the DSs in confined nanoferroelectrics have
not been studied yet, although there is experimental
evidence of the domain existence in the nanorods that
demonstrate piezoelectric response and polarization
switching under an electric field [3,4]. In this Letter we
use the phase-field modeling to predict DSs in ferroelectric
nanorods.

An important insight into the DS of confined ferroelec-
trics has been provided by the first-principles-based simu-
lations that have revealed a significant effect of the
depolarizing field on dipole patterns in low dimensional
ferroelectrics (rods, dots, etc.). It has been shown that the
screening of a depolarizing field in confined ferroelectrics
with the size of several nanometers proceeds through the
alignment of polarization along the surfaces, resulting in
the formation of vortex dipole patterns [5,6]. These results
allow one to expect that with the increase in the size of
ferroelectrics the vortex patterns transform to a closed
circuit of 90� domains, thus minimizing the depolarizing
field energy similarly to how closed flux domain configu-
rations minimize the magnetostatic stray field energy in
ferromagnetics. However, there is an important difference
between DSs in ferroelectrics and ferromagnetics besides
an obvious scale difference dictated by the different do-
main wall thickness. Since the spontaneous strain in ferro-
electrics (10�2 � 10�3) is much large than that in
ferromagnetics (10�4 � 10�5), the elastic interactions are
strong in ferroelectrics and negligible in ferromagnetics.
This leads to important peculiarities of DSs in confined
ferroelectrics, as it is shown in this paper.

We present the phase-field (PF) simulation results of
DSs in ferroelectric nanorods embedded into a nonferro-
electric film clamped by a substrate. Similar nanostructures

have been recently produced by the epitaxial self-
assembling of ferroelectric and ferromagnetic phases on
a single crystalline substrate [7–9], and their stress state
and coupling properties have been studied by using ana-
lytical and PF modeling approaches [10–12].

The phase-field approach used in this study allows us to
simulate the DS in the systems with a size up to 100 nm
with different ratios between the strengths of electrostatic
and elastic interactions, as well as to estimate different
energy contributions to the thermodynamics of a DS sys-
tem. In accordance with the PF approach, a DS is described
as a distribution of polarization Pi�r� or the order parame-
ter �i�r�, Pi�r� � P0 � �i�r�, where P0 is the saturation
polarization of a single domain equilibrium state. In
order to model the DS in a periodic nanostructure with
ferroelectric nanorods embedded into a nonpolarizing
matrix we have simulated the evolution of the order pa-
rameter in the rods, while maintaining a fixed order pa-
rameter in the matrix. The equilibrium domain structure is
described by the order parameter distribution correspond-
ing to the minimum of the free energy functional
F � FGL � Felectro � Fel, where FGL is the Ginzburg-
Landau potential, Felectro is the energy of electrostatic
interactions, and Fel is the energy of elastic interactions.

The Ginzburg-Landau potential, FGL,

 FGL �
Z
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includes the homogeneous state energy density, f0��i�,
approximated by the Landau-Devonshire type expansion,
and the energy of short-range interactions described by the
gradient terms. For the three component order parameter,
�i, i � 1, 2, 3, f0 is determined as
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This potential with the coefficients corresponding to the
transformation from the cubic to tetragonal state in PbTiO3

is used in the simulations. The second term in Eq. (2),
wherein �ijkl is the gradient coefficient tensor, determines
the interface energy. Since the value of the components of
the gradient coefficient tensor �ijkl cannot be determined
with a feasible accuracy due to the difficulties with the
separation of short- and long-range interactions, in our
simulations, we have used the isotropic gradient
coefficient.

The electrostatic energy of the inhomogeneous distribu-
tion of polarization under an external field is used as
introduced in [13,14]:

 Fdd �
1

2"0"
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where k � 0 is excluded from the integration, symbol
f. . .gk implies the Fourier transform, asterisk denotes a
complex conjugate, Ei is an external electric field, "0 is a
dielectric constant of vacuum, and "
 is a high frequency
dielectric constant not associated with the ferroelectric
order parameter ("
 is in the order of 1 [6,15]). To empha-
size the effect of electrostatic interactions we have as-
sumed "
 � 1. The first term in Eq. (3) is an equivalent
to �1=2

R
V EintPdV, where Eint is an internal electrostatic

field and describes the energy of electrostatic interactions
between inhomogeneities in the polarization distribution
without the Lorentz field energy. The Lorentz field energy
is included in the Landau-Devonshire free energy [Eq. (2)].
Thus, Eq. (3) incorporates long-range electrostatic inter-
actions within the phenomenological Landau theory
[13,16].

The energy of long-range elastic interactions is deter-
mined as
 

Fel �
Z
V

�
1

2
Cijkl�"ij�r� � "0

ij�r�	�"kl�r� � "
0
kl�r�	dV

�

� �appl
ij

Z
V
"0
ij�r�dV; (4)

where Cijkl is the elastic modulus, "ij�r� is the total strain,

and �appl
ij is an external stress. The transformation self-

strain "0
ij�r� � QijklPi�r�Pk�r�, where Qijkl is an electro-

strictive coefficient tensor. The elastic moduli are assumed
to be equal in the rod and matrix.

The equilibrium field of the order parameters �0
i �r� is a

solution of the equation �F=��i�r� � 0, which is obtained

by solving the time-dependent Ginzburg-Landau equation
using a fast Fourier transform method [13]:
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where L is the kinetic coefficient and �i is the Langevin
noise term. According to the microelasticity approach in
the PF modeling [13,17], the evolution of the microstruc-
ture is described by the solution of Eq. (5) presented in the
reciprocal space.

The following dimensionless parameters have been used
in the simulations: (a) dimensionless Landau coefficients,
�=�f, where �f is the difference between the energies of
equilibrium paraelectric (�i � 0) and ferroelectric states
(�i � �0

i ), where @f0��i�=@�i � 0; (b) dimensionless
gradient coefficient ~� � �=�fl20, where l0 is the compu-
tation grid length that determines the calculation length
scale, l0 � l��1=2, where l is the thickness of ferroelectric
domain walls (l� 1 nm); (c) characteristic elastic energy,
� � �"0

ijCijkl �"
0
kl=�2�f�, where �"0

ij � QijklP
0
i P

0
k; (d) char-

acteristic energy of electrostatic interactions, 	 �
P02=�2�"0�f�.

A 512� 64� 64 mesh with periodic boundary condi-
tions has been used for the simulation of a rod surrounded
by a dielectric matrix (a symmetrical cell). The electro-
static image charge principle has been used so that a half of
this cell, 256� 64� 64, represented the rod with one of its
ends covered by an electrode (an asymmetrical cell). The
transformation from an unstable paraelectric occurs
through the nucleation of a stable ferroelectric phase driven
by the Langevin noise in the evolution Eqs. (5). After a
sufficiently long relaxation process the equilibrium is es-
tablished between all domains, and in the final part of the
simulation process the domain pattern remains stationary.

DSs have been investigated in confined ferroelectric
nanorods with different cross section shapes and sizes.
To reveal relative effects of electrostatic and elastic ener-
gies two different 	=� ratios have been used in the simu-
lations: 	=� � 25, corresponding to ferroelectrics with a
large spontaneous deformation, such as PbTiO3 or BaTiO3

at room temperature, and 	=� � 250, corresponding to
ferroelectrics with a small spontaneous deformation. A
similar increase in the value of 	=� can be the result of
the decreasing saturation polarization in ferroelectrics with
an increasing temperature.

Figure 1 presents the DS in a rod oriented along h100i
with a square cross section and f100g faces. The modeling
has been performed with ~� � 8, corresponding to the cross
section length of 16 nm, and with the ratio of elastic to
electrostatic energies, 	=� , equal to 25. The DS consists of
closed circuits of 90� and 180� domains [Fig. 1(a)]. The
90� domains have different functions in different parts of
the rod. While the triangle prismatic domain at the end of
the rod screens the electrostatic stray field, the cubic do-
mains in the middle of the rod decrease elastic energy
caused by the rod/matrix misfit. The cubic domains cannot
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eliminate the internal stresses completely because (1) they
do not affect the misfit strain normal to the plane of
polarization, and (2) their formation is accompanied by
the disclination-type distortion [Fig. 1(b)]. Taking into
account that the relaxation through the formation of 90�

domains is possible only if the relaxed elastic energy is
larger than the interface domain energy, one may expect
that the cubic domains do not appear in DSs if the elastic
energy decreases. Indeed, DSs obtained at 	=� � 250 and
~� � 8 [Fig. 1(c)] do not contain cubic 90� domains. These
observations as well as the disappearance of the cubic
domains under the external compression applied along
the rod allow us to conclude that 90� cubic domains in
constrained nanorods are elastic domains [18]. It should be
emphasized that the DS presented above is an equilibrium
one: it can be removed by an applied electric field and then
reappear after the field has decreased. The electrostatic
compatibility (the zero charge on the domain interfaces)
is maintained during the domain evolution under an elec-
tric field [Fig. 1(d)]. It makes this evolution continuous and
the DS changes reversible.

A high level of residual stresses in simple DSs discussed
above makes them less thermodynamically preferable than
more complex structures in the rods with a larger thickness,
where the larger part of the elastic energy can relax despite
the increase in the interface energy. We present an example
of the results of the simulations of the DS at 	=� � 25 and
~� � 2, corresponding to the cross section thickness of
35 nm. In this case a crater-shaped closed circuit configu-
ration of four 90� domains with complete screening of
electrostatic stray field at the end of the rod is formed.

The relaxation of the misfit stress inside the rod proceeds
through the formation of a complex hierarchical structure
including 90� stripe domains. An irregular structure inside
the middle of the rod is eliminated by the electric field and
does not return when the field is removed. As a result, a
metastable DS is obtained, which consists of the crater-
shaped 90� domain assembly at the end of the rod and a
cylindrical configuration of 180� domains [Fig. 2(a)]. The
90� and 180� DSs are connected through a system of 90�

domain walls oriented along f111g planes [Fig. 2(b)]. The
condition for the electroneutral domain boundary, �P �
n � 0, leaves one of the n components free and, therefore,
allows for the f111g oriented domain boundaries without
charges. These DSs maintain the electrostatic compatibil-
ity during the electric field induced evolution and, there-
fore, change reversibly under the ac field. The equilibrium
state of the rod corresponds to a ‘‘bamboo’’ structure
[presented schematically in Fig. 2(c)] with a periodical
alternation of the 180� domains and double-crater-shaped
sets of 90� domains similar to those at the end of the rod.
However, this complex equilibrium structure could not be
reached within a reasonable simulation time. With a de-
creasing contribution of the elastic energy, 	=� � 250, the
DS is similar to the simplest one present in Fig. 1(c).

The DSs in nanorods with circular cross sections of
different diameters are presented in Fig. 3. The DS in a
nanorod at ~� � 8, corresponding to the diameter of 16 nm
and with 	=� � 25, is similar to the one obtained in the
square rod [Fig. 1(a)]. However, the domain walls between
90� domains have a cylindrical shape [Fig. 3(a)]. Although
there are no electrical charges on these curved domain
walls, they are the sources of internal stresses. Their pres-
ence in an equilibrium DS is dictated by the shape of rods

FIG. 1 (color online). A longitudinal view of the DS in square-
shaped rods with the cross section length of 16 nm (a half of the
computational cell is shown). Domain boundaries are normal to
the picture plane. (a) DS at 	=� � 25. (b) Disclination distortion
due to the 90� domain formation. (c) DS at 	=� � 250. (d) DS
under the electric field.

FIG. 2 (color online). DS in a square-shaped rod with the cross
section length of 35 nm. (a) Series of plane cross sections along
the ferroelectric rod, from the end of the rod (bottom) toward the
middle of the rod (top). (b) A schematic of the domain wall
arrangement in the section along CD plane [Fig. 2(c)].
(c) Equilibrium DS at 	=� � 25, the section along AB plane
[Fig. 2(b)] is shown.
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and is a result of a relatively small effect of the elastic
energy in comparison to the electrostatic energy of the
depolarizing field.

Contrary to the DS in a square rod, the simple DS above
is not able to completely remove the stray electrostatic
fields. Therefore the complexity of the DS in circular
shaped nanorods increases with the increase in the diame-
ter, even if the effect of the elastic stress is negligible.
Figure 3(b) presents the DS in a nanorod with ~� � 2,
corresponding to the diameter of 35 nm and with 	=� �
250. The stray field at the end of the rod is compensated by
the formation of the closed circuit configuration consisting
of four 90� domains with domain walls oriented along
f111g. The cylindrical 180� axial domains are formed far
from the end of the rod. A closed circuit of 90� domains is
connected with an outer axial domain along the f111g
domain walls and with an inner axial domain along the
distorted f110g domain walls [Fig. 3(c)]. These distorted
f110g plane walls as well as the curved 90� domain walls in
Fig. 3(a) appear due to the effect of the depolarizing field of
the nanorod cylindrical surface.

The structures presented in this paper are expected to be
found in confined ferroelectrics where the effect of electro-
static interactions, particularly of the depolarizing field, is
not diminished by the screening free charges. Therefore,
these DSs could not be observed in the experiments with
nanorods attached to a conductive substrate [3,4]. The
principal specific feature of DSs in nanorods is the com-
patible configurations of 180� and 90� domains. The 90�

domains minimize electrostatic energy of the depolarizing
field as well as elastic energy due to the mechanical con-
straint. The dominant effect of the electrostatic interactions

can cause the formation of nonconventional 90� domain
walls, which do not satisfy the condition of strain compati-
bility. These domain walls are charge-free, but they can
have an unusual orientation or be curved. In constrained
nanorods the closing 90� domains minimize the electro-
static energy of stray fields while the inner 90� domains
minimize the elastic energy (cubic domains in thin nano-
rods). The elastic 90� domains obviously should not de-
velop in unconstrained rods that should have the DSs
presented in Figs. 1(c), 2(a), and 3(b). On the other hand,
the trend to minimize the energy of the elastic interaction
between domains results in the formation of a multidomain
crater-shaped 90� domain configuration, which decreases
the energy of the residual stress while not violating the
electrostatic compatibility between 90� and 180� domains.
The equilibrium DSs are able to maintain the electrostatic
compatibility between domains during their change under
the electric field, thus making possible a continuous evo-
lution of the structure under the electric field.
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FIG. 3 (color online). DS in a circular shaped rod (a) Domain
boundaries of 90� domains inside the rod with the diameter of
16 nm and 	=� � 25. (b) Series of plane sections along the
circular shaped rod with the diameter of 35 nm and 	=� � 250.
Sections show the DS from near the end of the rod (bottom)
toward the middle of the rod (top). (c) A schematic of the domain
wall arrangement.
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