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High-Energy Limit of Massless Dirac Fermions in Multilayer Graphene
using Magneto-Optical Transmission Spectroscopy
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We have investigated the absorption spectrum of multilayer graphene in high magnetic fields. The low-
energy part of the spectrum of electrons in graphene is well described by the relativistic Dirac equation
with a linear dispersion relation. However, at higher energies (>500 meV) a deviation from the ideal
behavior of Dirac particles is observed. At an energy of 1.25 eV, the deviation from linearity is =40 meV.
This result is in good agreement with the theoretical model, which includes trigonal warping of the Fermi
surface and higher-order band corrections. Polarization-resolved measurements show no observable

electron-hole asymmetry.
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Graphene, a single sheet of graphite, is a two-
dimensional system which exhibits unique electronic prop-
erties mostly related to its peculiar band structure [1-4].
The remarkable physics exhibited by graphene has its
origin in the conduction and the valence bands which
meet at the two inequivalent (K and K’) corners of the
Brillouin zone. The electrons in the vicinity of the Fermi
energy do not obey Schrodinger’s equation, but should
instead be described using the quantum-electrodynamic
Dirac equation for relativistic fermions with zero rest
mass. The electrons have a linear dispersion relation whose
slope defines a Fermi velocity vg. In a relativistic analogy,
these electrons behave as massless Dirac fermions moving
at an effective speed of light vy. This system is of great
interest from a fundamental physics point of view and it
has even been suggested that graphene can be used for
benchtop quantum electrodynamics experiments [1], for
example, to test the Klein paradox [5]. However, in gra-
phene, considering the carriers as massless fermions re-
mains an approximation and it is both important and
interesting to verify the limits of this approximation.

Graphene has been extensively investigated using opti-
cal measurements such as Raman scattering [6—9], far-
infrared absorption (FIR) [10,11], as well as magneto-
photoconductivity [12]. Landau level (LL) spectroscopy
is a direct and precise tool to test the linear dispersion
relation in the close vicinity of the K and K’ points of the
Brillouin zone. In the presence of a magnetic field B,
perfect linearity leads to the observed +/Bn spacing for
the LLs indexed by the integer n. In the low-energy range
of the Dirac cone, the linearity of the dispersion relation is
well preserved [10—12]. However, graphene is a solid-state
system composed of carbon atoms arranged in a honey-
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comb lattice and the linear dispersion in these specific high
symmetry points is only a part of a complicated band
structure. This implies that the analogy with neutrinos,
massless Dirac particles, cannot hold everywhere, and we
expect a deviation from a linear dispersion for high ener-
gies of the Dirac cone. Although it is well established that
at low energies, electrons in graphene can be treated as
massless Dirac particles, it is crucial to determine the limits
of this approach.

In this Letter, we probe the limits of the massless Dirac
fermion approximation in graphene by extending the pre-
vious studies [10,13] to higher magnetic fields, and, most
importantly, to higher energies. Using magneto-optical
transmission spectroscopy, we present a full LL spectros-
copy in magnetic fields up to 32 T, from the far infrared to
the visible range of energy. Transmission measurements
performed in the near visible provide an access to the high-
energy range (=1.25 eV) of the Dirac cone. A significant
deviation from the linear dispersion of ideal Dirac fermions
is observed. The experimental data are compared to a
theoretical model which includes higher-order band terms
and a good agreement is obtained. In addition, the asym-
metry between electrons and holes has been probed using
polarization-resolved transmission experiments.

We have investigated samples containing a high number
of graphene layers (between 70 and 100) grown in vacuum
by the thermal decomposition method, on a (4H) SiC
[14,15] substrate. Both experiment and theory confirm
that the layers are electronically decoupled so that the
system can be considered as a multilayer graphene sample
[9,10,13,16]. In particular, these samples show Raman
spectra with the characteristic signature of single layer
graphene [9]. It is likely that this peculiarity of multilayer
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graphene, as compared to graphite, is due to rotational
disorder in the stacking, which reduces strongly the inter-
layer coupling by roughly 2 orders of magnitude [16]. To
cover the full spectral range, two different experiments
have been performed. The unpolarized far-infrared mag-
netotransmission of the sample at 7 = 1.9 K has been
measured using a Fourier transform spectroscopy (FTS).
To explore the higher energy range the magneto-
transmission up to the visible light range has been mea-
sured at 7 =4.2 K using a tungsten halogen lamp.
Transmission measurements were circular polarization re-
solved and spectra recorded for both polarities of the
magnetic field. A representative transmission spectra is
shown in Fig. 1(a). All spectra show a number of absorp-
tion lines which can be assigned to transitions between
L_,,-nand L, LLs, where m, n enumerates the Landau
levels. In the experiment, we observed all transitions from
Ly—=Ly(Ly,—L)toL_j3— Ly (L_13— Lp3).

The energetic position of the observed absorption lines
is plotted as a function of the square root of the magnetic
field in Fig. 1(b). At low energies, the positions of the
optical transitions follow the theoretical (linear) prediction
for Dirac particles [dashed lines in Fig. 1(b)]. For energies
above ~500 meV a deviation from the predicted linear
Dirac dispersion starts to be observed (this can be seen
more clearly in Fig. 2). Recently, Jiang et al. [11] presented
FIR spectra of a single layer of exfoliated graphene and
determined a Fermi velocity vy = 1.1 X 10°® m/s. This is
somewhat larger than the value vy = 1.02 X 10° m/s ob-
tained here from the slope in the low-energy region of
Fig. 1(b). Moreover, in Ref. [11], a deviation from the
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FIG. 1 (color online). (a) Representative differential transmis-
sion spectra (the B = 0 T spectra has been subtracted) measured
at the given magnetic fields. (b) Positions of the absorption lines
as a function of the square root of the magnetic field. Stars
represent data obtained in near visible range, circles denotes the
data measured by FTS. Dashed lines are calculated energy of the
transitions between LLs assuming a linear dispersion. On the
right-hand side the observed transition L_,,(_,) — L, LLs are
denoted.

ideal scaling between adjacent energy transitions was re-
ported, and interpreted as a consequence of electron-
electron interactions. In contrast, in our data the scaling
of the transition energies is well preserved in the low-
energy part of the Dirac cone [see Fig. 1(b)], while at
higher energies, we observe deviations due to the non-
linearity of the dispersion relation, as discussed below.

A simple theoretical model has been developed to in-
vestigate deviations from the relativistic Dirac case within
the tight-binding model with a nearest-neighbor (NN)
hopping term 7= 3 eV on a honeycomb lattice [17].
Next-nearest-neighbor (NNN) hopping #, between sites
on the same sublattice, is also included, with '/t ~ 0.1
[18]. The model considers a single graphene layer, which is
a valid assumption in the case of almost decoupled layers.
The energy dispersion for this model may be obtained from
a diagonalization of the 2 X 2 Hamiltonian matrix, which
reflects the presence of two triangular sublattices A and B,

_ (W) i)
H@=(ha wia ) ®

with  h(q) = —IZ;.:I exp(ig-a;) and  A(q) =
2ty ;_cos(q - 7)j. Here, the vectors a; = a(\/3e, +
e,)/2, ay = d(—+/3e, +e,)/2, and a; = —de, indicate
the coordinates of NN carbon atoms, with a distance d =
0.14 nm, and 7, = /3de,, 7, = /3d(e, + \/§ey)/2, and
7 = a(—e, + \/gey)/Z those between NNN.

In order to obtain the low-energy spectrum of the dis-
persion, one expands /(q) and 4/(q) around the K and K’
points at the edges of the first Brillouin zone (BZ), char-
acterized by the wave vectors *K = *+(477/3+/3d)e,. An
expansion in k = q ¥ K, up to third order yields

~ ~2. 2

h(+, k) = th<k - %kﬂ - %Iklzk) )
aw, a‘wj

k) = (0 + SR~ TR, )

for the K (@« = +) and K’ (a = —) points, respectively,
where we have used the complex notation k = k, + ik,
and vy = 3td/2h. Furthermore, we have introduced the
phenomenological parameters w; and w,, in order to ac-
count for corrections beyond the simplest tight-binding
model [19], which yields w; = w, = 1. For the NNN
term, expanded to lowest nontrivial order around K and
K', one obtains

9t/ ~2
W(k) = —3¢ + —4" (k2 + k2) )

and thus the total energy dispersion, taking into account
both higher-order band corrections and NNN hopping,
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FIG. 2 (color online). The deviation from linearity AE [from
the data in Fig. 1(b), with the same colors] for the different
transitions as a function of the energy A9. The solid lines are the
result of the theoretical calculation as described in the text.
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where o = + denotes the conduction and o = — the
valence band, and tan¢y = k,/k,. We have subtracted
the unimportant constant —3#, redefining the zero-energy
position. The cosine terms in Eq. (5) indicate that the
energy dispersion becomes anisotropic (trigonal warping)
[19]. One clearly notices from Eq. (5) that NNN hopping
breaks the particle-hole symmetry but leaves the Fermi
velocity unchanged.

In order to account for the magnetic field, we use the
Peierls substitution, which consists of replacing the wave
vector k by a momentum operator in the continuum mini-
mally coupled to the vector potential A,k — II = p + ¢A
[20]. The operator II may be expressed in terms of
harmonic-oscillator ladder operators, with [a,a']=1,
and the Peierls substitution thus reads

k— iv2i5'at and k* — —iv2l;'a. (6)
Here, Iz = +/h/eB =26/\/B[T]nm is the magnetic

length, which is large in comparison with d, and the above
corrections to the linear energy dispersion are governed, in
the presence of a magnetic field, by the small parameter
d/lg. The substitution (6), together with Egs. (2)—(4),
allows one to calculate the energies of the relativistic
LLs, which, in the absence of the trigonal-warping terms,
read

dwi —w? ra\? 3ta \2
2lp——2 1 l<—>n2}=<sn— —n). 7
al (7 Y ) O
Here, we have defined y = V2hvp/lg and neglected terms
due to the order of the operators a and a’ when using the

substitution (6). This is justified in the large-n (semiclas-
sical) limit. In order to account for trigonal warping at
leading order, we use perturbation theory, which is justi-
fied because a/lz << 1. There is no contribution at first
order since (n|at3|n) = 0 due to the orthogonality of the
eigenstates (n|n’) = 8,,. At second order, one obtains
—v?wi(a/l)*[3n(n + 1) + 2]/8, which needs to be
added to the left-hand side in Eq. (7). The fact that trigonal
warping is manifest only at order (d/lz)* is due to the
magnetic field, which averages to zero the cos3 ¢, term in
Eq. (5) when summing over the angle ¢,.

One finally obtains, in the large-n limit, where these
corrections become relevant, the energies of the relativistic
LLs for both valleys, K and K’,

_ 3 a _3w?ra\? 0
E€gn = Yﬁ E” + 0")’\/7_1{1 ?<E> [n+ O(n )]},
(8)

where O(n°) stands for corrections of order unity, and we
have defined w? = (w} + 2w3)/3, which may be measured
experimentally. The LL structure in the presence of NNN
hopping has been discussed before in Ref. [21]. We have
checked the above result within the semiclassical Onsager
quantization scheme, and a comparison with a numerical
solution of the Harper equation on the honeycomb lattice
shows excellent agreement even at small values of n [22].

In our experimental study, we compare the deviation
AE* = A% — A between the interband-transition ener-
gies A = y(\/n + 1+ /n) of the ideal case of Dirac
electrons with linear dispersion and the measured transi-
tions A, (for —n — (n + 1)) and A, [for —(n + 1) — n],
as a function of Ag. In Fig. 2, we compare these deviations
to the theoretical expectations
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obtained from Eq. (8) in the large-n limit and A =
*(e+,41 — €5.,)- Note that AY o +/Bn when n> 1.
The solid lines in Fig. 2 show the theoretical result (9)
with a fitting parameter w = 2.8 (compared to w = 1 in
the simplest tight-binding model). This somewhat large
value indicates that although the tight-binding model
yields the correct functional form and order of magnitude
of band corrections, it underestimates the strength of these
corrections, in particular, the effect of the trigonal warping.
In order to account for this enhanced value in a theoretical
model, one would need to include corrections due to the
overlap of the atomic wave functions on the different
lattice sites, larger distance hopping, and possibly interac-
tion effects. One may also speculate that, although the
graphene layers are only weakly coupled, the remaining
interlayer coupling might play a role [23]. Indeed, trigonal
warping in bilayer graphene and graphite is dominated by
interlayer hopping, which could be on the same order of
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FIG. 3 (color online). (a) The polarization selection rules for
optical transitions in graphene. (b) The differential transmission
spectra for both circular polarization of the light.

magnitude as the abovementioned dispersion corrections
[24,25].

Equation (8) shows that the LLs are not electron-hole
symmetric due to NNN hopping. The resulting asymme-
try A =|A, — A}| in optical LL transitions is A =
3+2yt'd/tly =~ 0.08B[T] meV, which is independent of
n. At fields as high as 30 T, one therefore expects an
electron-hole asymmetry on the order of 2.5 meV, which
roughly corresponds to the thickness of the theoretical
curve in Fig. 2. The effect is thus beyond the resolution
of our experimental data.

Additional confirmation of the small electron-hole
asymmetry in the LL transitions can be seen using a
polarization-resolved experiment. The polarization selec-
tion rules for optical transition in graphene are shown
schematically in Fig. 3(a). In Fig. 3(b) we present trans-
mission spectra measured for both polarizations at differ-
ent magnetic field values. No significant differences
between the positions of the absorption lines can be seen
for the different polarization suggesting that there is no
observable asymmetry between the electron and hole
cones.

Symmetry breaking in a gated single sheet of graphene
has been reported recently by Deacon et al. [12]. In their
cyclotron resonance measurements, the asymmetry is at-
tributed to NN wave-function overlap corrections charac-
terized by the overlap integral s, [26]. In this case the LL
transition asymmetry is A’ = 3v2ysyd/lz « B, which
shows that s, plays a role similar to #/f, even though the
two types of asymmetry have different microscopic ori-
gins. Deacon et al. estimated the strength of the asymmetry
tobe A’ =5 meVatB=9Tfromthe) — land —1 — 0
transitions [12], which is in between 5 and 7 times larger
than theoretical estimates, depending on whether one takes
so = 0.129 [26] or ¥/t ~ 0.1 [18] with t = 3 eV. For a
field of 32 T, this would yield an asymmetry of the order of
18 meV, which should be visible, but is clearly not ob-
served in the 32 T spectra in Fig. 3(b).

In conclusion, we have probed the high-energy range
(=1.25 eV) of the Dirac cone in multilayer graphene and
observed a significant deviation from the linear dispersion

for massless Dirac fermions. A theoretical model which
includes higher-order band terms gives good agreement
with experiment. No electron-hole asymmetry in
interband-LL excitations is observed, in agreement with
our theoretical description, where this asymmetry plays a
minor role as compared to trigonal warping of the Fermi
surface and higher-order band corrections.
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