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Electron-electron interactions give rise to the correction, ��int�!�, to the ac magnetoconductivity,
��!�, of a clean 2D electron gas that is periodic in !�1

c , where !c is the cyclotron frequency. Unlike
conventional harmonics of the cyclotron resonance, which are periodic with !, this correction is periodic
with !3=2. Oscillations in ��int�!� develop at low magnetic fields, !c � !, when the conventional
harmonics are suppressed by the disorder. Their origin is a double backscattering of an electron from the
impurity-induced Friedel oscillations. During the time �!�1 between the two backscattering events the
electron travels only a small portion of the Larmour circle.
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Introduction.—Originally, the cyclotron resonance (and
its harmonics) in the ac conductivity, ��!�, of the 2D
electron gas had been detected by measuring the trans-
mission of the microwave radiation [1]. In the recent
experiment on high-mobility samples [2], it was demon-
strated that this resonance, together with harmonics, also
manifests itself in the dc magnetoresistance under micro-
wave illumination, i.e., in the photoconductivity. The spec-
tacular strength of this effect and, in particular, the
observation of a zero-resistance state above a certain in-
tensity of illumination [3–5], attracted the steady in-
terest of researchers to the ac-response of a high-mobility
electron gas in a weak magnetic field, B. Unlike the
conventional Shubnikov–de Haas oscillations of the dc
magnetoresistance, which vanish with temperature as
exp��2�2T=!c�, where !c is the cyclotron quantum, the
magneto-oscillations of ��!� survive at high temperature
[6,7]. The shape of these oscillations is given by [6,7]
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where � is the scattering time, and ���!� is related to the
dc conductivity �0 as ���!� � �0=�2	 2�!�!c�

2�2
.
Classically, the meaning of the damping factor �2 �
exp��2�=!c��< 1 is the probability for an electron to
execute the entire Larmour circle, 2�RL, without being
scattered. Oscillations Eq. (1) is a single-electron effect. In
converting of these oscillations into the oscillating dc
photoconductivity [7–10], the electron-electron interac-
tions enter as a source of relaxation of the oscillatory
part of the distribution function.

In the present paper we demonstrate that interactions
by themselves give rise to the oscillatory contribution,
��int�!�, to the linear ac conductivity, ��!�, at frequen-
cies much higher than in Eq. (1). To contrast this contri-
bution to Eq. (1), we present ��int�!� in the form
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and EF is the Fermi energy. Since C! is small, the correc-
tion Eq. (2) develops oscillations at much smaller magnetic
fields !c � C!!� ! than Eq. (1). At such fields, the
damping factor in Eq. (1) is � exp��2�=C!�;, i.e., the
conventional oscillations are completely washed out.

Qualitative picture.—The origin of the oscillations
Eq. (2) lies in a peculiar modification by the interactions
of the impurity scattering in a weak magnetic field.
Conventionally [11–13], this modification amounts to the
additional scattering [14] from the Friedel oscillations of
the electron density, created by the impurity. Such a modi-
fication does not lead to the anomalous sensitivity to low B.
However, as we demonstrate below, this sensitivity
emerges in the second order in the electron-electron inter-
action strength. The corresponding second-order processes
are illustrated in Figs. 1 and 2. The are the following. (i) A
photoexcited electron emits a virtual pair, which is sub-
sequently annihilated. Impurity scatters not the original
electron, but rather the impurity scattering occurs between
the states, constituting the pair, prior to annihilation.
Diagram b in Fig. 2 describes this process. (ii) Electron
is not scattered directly by the impurity, but rather experi-
ences a double backscattering from the impurity-induced
Friedel oscillations, as illustrated in Fig. 1, and also by the
diagram a in Fig. 2.

We demonstrate that the corrections to the conduc-
tivity from both these processes oscillate with magnetic
field according to Eq. (2). The oscillations reflect the
fact that, for both processes, the dominant contribution to
the double backscattering cross-section comes from two
‘‘distinguished’’ points that are located symmetrically
with respect to the impurity at certain well-defined dis-
tance, r!�C!RL, see Fig. 1. Then the argument of the
cosine in Eq. (2) can be interpreted as a product!t!, where
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t! � r!=vF is the time, during which the electron with
Fermi velocity, vF, travels the distance r!.

Derivation.—Although the interaction-induced oscilla-
tions come from small distances, r! � RL, we never-
theless will evaluate ��!� in the Landau gauge to demon-
strate how both oscillations Eq. (1) and (2) emerge from
the same calculation. Within the self-consistent Born ap-
proximation, averaging in the general expression for the
diagonal conductivity

 ��!� �
�e2

4�3�

Z 1
�1

d�
!
�f� � f�	!�Trv̂xImĜ�	!v̂xImĜ�

(4)

is decoupled into two averaged Green functions
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where �n � �n	
1
2�@!c are the Landau levels, and �n��� is

the self-energy. In Eq. (4), the bar denotes the disorder
averaging, � is the normalization area, and f� is the Fermi
distribution. Upon decoupling, Eq. (4) takes a familiar
form
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where �0 is the 2D density of states. For high Landau
levels, �EF=@!c� � 1, in the first approximation in � <
1, the self-energy can be replaced by its zero-field value,
i=2�. Then Eq. (6) readily reproduces the Drude con-
ductivity. In order to capture the oscillatory ac magneto-
conductivity, in the next approximation, one should take
into account the ‘‘quantum’’ correction, ��Q

n ��� /
� exp��2�i�=!c�, to the self-energy due to the discrete-
ness of the Landau levels, as well as the interaction cor-
rection, ��int

n ���. Since both corrections are smaller than
1=�, they cause a small correction to the Green functions
Eq. (5) of the form

 �Gn��� �
��Q

n ��� 	 ��int
n

��� �n �
i

2��
2 : (7)

The first and the second terms in Eq. (7) give rise to the
oscillations Eq. (1) and Eq. (2), respectively. However, to
reproduce these oscillations the quantum and the inter-
action corrections should be handled differently. To repro-
duce Eq. (1), upon substituting Eq. (7) into Eq. (6), one
should keep the product, ��Q

n	1��	!����Q
n ���
. It con-

tains the oscillating term / exp��2�i!=!c�, which does
not depend neither on n nor on �. For this reason, the
resulting oscillations of magnetoconductivity are T inde-
pendent. By contrast, to capture the interaction-induced
oscillations, it is sufficient to keep ��int

n only in one of the
Green functions in Eq. (6), and its n-dependence is crucial.
We will perform further calculation for ��int

n ��� given by
the first diagram of type c in Fig. 2 (inset). This is because
the diagrams of type b do not cause magneto-oscillations,
while the contributions of other diagrams of type c are
comparable to that of the first one, and will be addressed
later.

The first diagram of type c can be presented as

 ��int
n ��� �

X
m

jRnmj2

�� �m 	
i

2�

; (8)

so that the n dependence is encoded in the ‘‘matrix ele-
ments’’, Rnm. Substituting Eq. (8) into Eq. (7), and then
Eq. (7) into Eq. (6) yields

FIG. 2. Diagrams contributing to the second-order interaction
correction to the ac magnetoconductivity. Dashed lines denote
the impurity scattering. Dots in the vertices combine two types of
the interaction matrix elements, as shown in the left inset.
Diagrams b and e describe the impurity scattering of the sec-
ondary electron (hole); other diagrams describe double sca-
ttering of photoexcited electron (hole) by the Friedel oscil-
lation. Right inset: diagram (a) for purely disorder-induced
part of the self-energy, �n, is plotted together with representative
diagrams (b) and (c) for the interaction-induced self-energy,
��int

n . Only diagrams (c), describing two electron-electron scat-
tering processes, contribute to the interaction-induced magneto-
oscillations.

ωrωr

1 2

θR L R L

FIG. 1 (color online). Illustration of the B-dependent contri-
bution, ��B�r�, to the phase of the polarization operator;
RL��� 2 sin��=2�
 is the elongation of the semiclassical trajec-
tory due to the field-induced curving. The origin of oscillating
magnetoconductivity is the scattering from the Friedel oscilla-
tions (arcs of decreasing thickness), at points 1 and 2, located
symmetrically with respect to the impurity shown with a big dot.
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As a next step, we express the matrix element, Rnm, as an integral in the coordinate space, following Fig. 2(c), Rnm /R
dr n�r� m�r��0�r; 0�, where �0�r; 0� is the static polarization operator between the point r � 0, where the impurity is

located, and the point r, where the backscattering takes place. Our prime observation is that with such Rnm the relevant
term in Eq. (9), which has the form
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again reduces to the polarization operator, �!�!c
�r1; r2�.

In the final expression for the interaction correction we make use of the fact that the B-dependence of this correction
develops in the low-field limit !c � C!!� !, and replace !�!c by ! [15]. We then obtain
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where � stands for dimensionless strength of interaction,
which we assumed to be short-ranged. The numerical
factor in Eq. (11) will be established when all the diagrams
contributing to ��int are considered (see below).

Interpretation.—The form of Eq. (11) can be inter-
preted as follows. The factor, Im�!�r1; r2�, in the inte-
grand is the density-density response, the same as in cal-
culation of the Drude ac conductivity. The second factor,
Ref�0�0; r1��0�r2; 0�g, plays the role of the spatial corre-
lator of the effective random potential. By lifting the
momentum conservation, this potential enables the absorp-
tion of the ac field. If the correlator was / ��r1 � r2�, then
the rhs of Eq. (11) would yield an !-independent constant.
Important is that the effective potential in Eq. (11) origi-
nates from the modulation of the electron density by the
impurity, and thus oscillates rapidly with distance. It is
these Friedel oscillations that in magnetic field lead to the
oscillating correction, Eq. (2).

Oscillations.—The long-distance, kFr� 1, behavior of
the polarization operator in coordinate space is the follow-
ing
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where the function A�x� � x= sinh�x� describes the tem-
perature damping. In the momentum space, two contribu-
tions to Eq. (12) originate from small momentum transfer
and momentum transfer close to 2kF, respectively [16]. At
distances r� RL, a nonquantizing magnetic field enters
into Eq. (12) through the semiclassical phase, ��r�. This
phase is accumulated by the electron upon propagation
from the point 0 to the point r and back. In a zero magnetic
field, we obviously have, ��r� � 2kFr. At distances r�
RL, the field-dependent correction [17] to ��r� is equal to

 ��B�r� � 2kF�L�
AB
�0
� �

EF!
2
cr

3

6v3
F

: (13)

The origin of the correction Eq. (13) is illustrated in Fig. 1.
It comes from elongation, �L � RL��� 2 sin��=2�
, of
the classical electron trajectory in magnetic field, as well
as from the Aharonov-Bohm flux into the loop with area
A � ��� sin��R2

L=2. The correction Eq. (13) is negative,
since the Aharonov-Bohm contribution exceeds twice the
orbital contribution. We emphasize, that the conventional
way [18] of incorporating magnetic field into the Green’s
function neglects the curvature of the electron trajectories,
i.e., ��B�r� � 0. Thus, within the approach of Ref. [18],
the oscillations Eq. (2) would not emerge.

Further calculation is straightforward. Substituting
Eq. (12) into Eq. (11), performing the angular integration,
and combining rapidly oscillating terms in the product of
three polarization operators into a ‘‘slow’’ term, we find
that the interaction correction Eq. (11) can be presented as
��int=��!� � ��2EF=!�F�;T , where the dimensionless
function F�;T�!;!c� is defined as follows

FIG. 3 (color online). Interaction-induced contribution to the
ac conductivity calculated numerically from Eq. (14) (dotted
line) and from asymptotic expression Eq. (16) (full line) are
plotted vs dimensionless frequency x � 21=3!=�E1=3

F !2=3
c � �

3�z=4�2=3. The calculations are performed for dimensionless
disorder 1=�EF�� � 0:08�!c=EF�2=3 and dimensionless tem-
perature T=EF � 0:06�!c=EF�

2=3.
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Other slow terms emerging in the rhs of Eq. (11), e.g., the one with !! �!, do not oscillate with magnetic field. By
contrast, the function F�;T does oscillate, since the argument of cosine in Eq. (14), with ��B given by Eq. (13), has a saddle
point at r1 � r2 � r! � 3C!vF=4!c � �3=4�C!RL. In the vicinity of the saddle point, the phase of the cosine can be
presented as
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where C! is defined by Eq. (2). Note, that the combination, �C!!=!c �
�
4
, in (15) is nothing but the phase of the

interaction-induced oscillations Eq. (2). It also follows from Eq. (15) that, when this phase is large, the characteristic
deviations, �r1 � r!� and �r2 � r!� are much smaller than r!. This allows us to perform the integration over these
deviations in Eq. (14) explicitly. This yields
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where D�z� � z�5=6. For high enough temperatures T >
2!c=3�C! (but still T � !), the damping factor can be
replaced by the exponent, and we reproduce the oscillating
contribution Eq. (2). The above derivation suggests that
oscillatory behavior of the correction Eq. (2) establishes
only at large z� 1, which corresponds to the nodes of
cos�z� �=4� with high numbers. To find out where the
asymptotics Eq. (16) actually applies, we have evaluated
the double integral Eq. (14) numerically. The result is
plotted in Fig. 3 and indicates that Eq. (2) applies starting
already from the third node.

Other diagrams.—Contribution Eq. (16) to ��int�!� is
the result of calculation of a single diagram a in Fig. 2.
Other diagrams, involving two electron-electron scattering
processes and yielding contributions with a structure simi-
lar to Eq. (16), are shown in Fig. 2. Diagrams b, c, and d are
captured within the self-consistent Born approximation,
and correspond to certain terms in ��int, see (c) in Fig. 2
(inset). Diagrams e� h in Fig. 2 are of the same order as
a� d, but they are not contained in Eq. (6); these diagrams
emerge from the general expression Eq. (4) for ��!�. Tak-
ing all the diagrams into account leads to the modification
of the function D�z� from z�5=6 to ~D�z� � �32z�5=6 	

64z1=6, where the factors �32 and 64 account for the spin
indices and for the number of closed fermion loops in dif-
ferent diagrams. The second term, / z1=6, arises from the
diagrams b, e and d, h in Fig. 2. Since the oscillations in
Eq. (2) develop at z� 1, these diagrams are, actually,
dominant.

Numerical estimates.—Note that, in terms of B period-
icity, oscillations Eq. (2) coincide with oscillations Eq. (1)
upon rescaling !c by 2�=C! in the argument of cosine,
and by 2�=3C! in the Dingle factor. For a typical ac fre-
quency @!� 3 K and density n� 1011 cm�2 in the ex-
periments [2–5,19,20] this shifts the domain of oscillations
Eq. (2) from B� 0:2 T to B & 10�2 T. For such B the
observation of the oscillations requires T < !c=6�C! �

20 mK, which was not the case in Refs. [2–5,19,20]. For
observation of magneto-oscillations Eq. (2) higher den-
sities n� 5� 1011 cm�2 and frequencies @!� 15 K are
needed.
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