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We investigate collective Cooper-pair transport of one- and two-dimensional Josephson-junction arrays.
We derive an analytical expression for the current-voltage characteristic revealing thermally activated
conductivity at small voltages and threshold voltage depinning. The activation energy and the related
depinning voltage represent a dynamic Coulomb barrier for collective charge transfer over the whole
system and scale with the system size. We show that both quantities are nonmonotonic functions of the
magnetic field. We propose that formation of the dynamic Coulomb barrier and its size scaling are
consequences of the mutual Josephson phase synchronization across the system. We apply the results for
interpretation of experimental data in disordered films near the superconductor-insulator transition.
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Recent experimental studies of the superconductor-
insulator transition (SIT) (see [1] for a review) in thin
disordered superconducting films proved formation of a
collective insulating state exhibiting thermally activated
Arrhenius-like conductivity at low biases [2– 4] and the
threshold voltage depinning [3,5] behavior. Below the
depinning voltage, VT , a film falls into a zero-conductivity
phase and abruptly switches to a finite conductance regime
when the bias achieves VT . The discovery of the novel
phase existing in a narrow window of disorder strength
near SIT calls for a comprehensive theory.

Josephson-junction arrays (JJAs) serve as a perfect test-
ing ground for SIT studies (see, e.g., [6–10]). A salient
similarity of the voltage threshold behavior in supercon-
ducting films [3,5] and the voltage depinning in one-
dimensional JJAs [10] suggests an intimate relation be-
tween these systems. Further parallel appears from the
striking observations of voltage threshold dependence on
the array length in [10], the sample size dependent activa-
tion energy, kBT0, observed in [4], and the connection
between VT and T0 revealed in [3]. An advantage of a
JJA as a model system is that it offers a straightforward
theoretical description of the current-voltage characteris-
tics, which is what is measured in all the major experimen-
tal studies of SIT. In this Letter we develop a theory of the
collective transport of large Josephson-junction arrays in
the insulating state and apply our results for interpretation
of experimental data on SIT.

The current-voltage characteristics of Josephson sys-
tems in an insulating state were discussed in a single
junction [11–13] and two-junction [14,15] systems. Each
junction is characterized by the Josephson coupling energy,
EJ � @Ic=2e, where Ic is the Josephson critical current,
and by charging energies Ec related to interisland capaci-
tance and Ec0 associated with capacitance to ground, C0.
We consider an insulating state, with charging energies Ec,
Ec0 � EJ, in the vicinity of SIT, where the superconduct-
ing gap �>Ec [16]. This implies that the transport is me-

diated by the thermally activated motion of the Cooper
pairs [18]. We show that in the regular and disordered
arrays a collective current state develops. This state is char-
acterized by the energy gap, �c, stemming from the col-
lective Coulomb blockade effect involving all junctions
and extending over the whole system. We derive low-bias
I-V dependence in the temperature interval Ec < kBT <
�c:

 I / exp
�
�
��c � eV�

2

2�ckBT

�
: (1)

Equation (1) reveals that there are two dynamic regimes:
first, thermally activated charge transfer with the resistance

 R / exp��c=�2kBT�� (2)

at eV � �c and, second, threshold behavior at V 	 VT ’
�c=e, where the activated conductivity turns to a finite
nonactivated transport. We find that in a regular 1D array
�c ’ EcL=d, while in a 2D array �c ’ Ec ln�L=d�, where
L is the array length and d is the size of the elemental cell
of the array. We demonstrate, finally, that the magnetic
field perpendicular to the film gives rise to a nonmonotonic
�c�B� dependence in an excellent agreement with the
experimental data on both 1D artificial Josephson arrays
[10] and superconducting films near SIT [3,5].

Let us consider N 
M superconducting islands com-
prising a two-dimensional array closed by a small (as
compared to the quantum resistance for Cooper pairs
RCP � h=4e2 ’ 6:45 k�) external resistance, Rext; see
Fig. 1. We assign the fluctuating order parameter phase
�ij�t� to the fi; jgth superconducting island (see Fig. 1). The
phases of the left- and right leads, �L�t� and �R�t�, respec-
tively, are fixed by the dc voltage V across the array:

 �R � �L � 2eVt=@�  �t�; (3)

where  �t� describes fluctuations in the leads. We single
out the leftmost, i � 1, and rightmost, i � N, columns of
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islands directly coupled to leads and represent the array
Hamiltonian in a form:

 H � H0 �Hint �
@

2

8Ec
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2

� 2EJ
XM
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�
:

Here
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X
hij;kli

�
@

2

4Ec
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2 � EJ cos��ij � �kl�
�

�
X
ij

@
2

4Ec0
_�2
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the brackets hij; kli denote summation over the pairs of
adjacent junctions, and the last term in (4) represents the
self-charge energies of superconducting islands. The Hint

term in (4) describes coupling of phases on the leads to the
thermal heat bath [11].

The dc Josephson current through the array is

 Is�V� � Ic lim
�!1

1

�

Z �

0
dt
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�
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where the brackets h. . .i stand for an averaging over ther-
mal fluctuations in the leads and quantum mechanical

averaging over phases of internal junctions [�ij�t�] and
over the variable �j � ��1j � �Nj�=2. We construct the
time-dependent perturbation theory with respect to small
parameter EJ=Ec, similar to the case of a Cooper-pair two-
junction transistor [14,15], omitting the last term in (4)
since in most experiments C� C0, and thus Ec � Ec0. In
the first order one finds

 hcos�ji�
EJ
2Ec

cos
�

2eVt=@� �t���1�t���N�t�
2

�
: (6)

In the second order, using the approach developed in [11],
one arrives at

 Is�V��MIc
EJ
@

�
EJ
2Ec

�
2
=m

Z 1
0
dte�t�=@K�t�ei��2eVt�=@�;

(7)

where � � 4e2RextkBT reflects the Gaussian character of
the current noise in the leads due to thermal fluctuations
[11,19]. The correlation function of internal phases is
defined as

 K�t�� hexpfi��1j�t���1j�0���Nj�t���Nj�0��giH0
: (8)

In the two-junction system (single Cooper-pair transistor),
�1j � �Nj, K�t� � 1, and we recover the results of [15]. In
the zero approximation one neglects the Josephson cou-
pling inside the array, and K�t� can be found in a closed
form as an analytical continuation of K���, where � is the
imaginary time:
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Expanding phases �ij�~�� over the Matsubara frequencies
!m � 2�kBTm=@ as �ij�~�� �

P
exp�i!n~���ij�!m�, and

going over to charge representation, �ij�!m� �

nij�2EckBT=�@!m�
2��exp��i!m�� � 1�, with nij being

the number of Cooper pairs localized on the fijgth island,
one eventually obtains the correlation function K�t�:

 K�t� � exp��2�ckBTt2=@2 � 2i�ct=@�; (10)

where �c is the barrier for the Cooper-pair propagation
through the whole system defined by the relation
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When deriving Eqs. (9)–(11), the nonzero winding num-
bers Wij � ��ij�@=kBT� � �ij�0��=�2�� were neglected,

FIG. 1 (color online). Sketch of the considered array geome-
tries. An external current I is injected from the left through the
electrode having the superconducting phase �L and extracted
through the right electrode with the phase �R. Upper panel: One-
dimensional array of N superconducting islands (squares) con-
nected by two Josephson junctions (crosses) to neighbors corre-
sponding to experimental system of [10]. Lower panel: Two-
dimensional M
 N Josephson-junction array.
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which is justified only at temperatures T > Ec=kB. At T �
Ec=kB a Berezinskii-Kosterlitz-Thouless–like transition
into a low temperature superinsulating state occurs.
Accounting for nonzero windings numbers at T < Ec=kB,
one finds the double-exponential resistivity R /
expf��c=Ec� exp�Ec=�2kBT��g in the superinsulating state
[20]. In what follows we restrict ourselves to moderate
temperatures, Ec < kBT <�c.

Plugging (10) into (7), one derives the current-voltage
characteristics of the insulating state as given by Eq. (1). At
low biases, eV � �c, it gives an Arrhenius activation
temperature dependence (2) for the resistance, with the
activation energy, �c, defined by Eq. (11). In 1D case,
one writes n1 � nN � n1 � n2 � n2 � n3 � . . .� nN�1 �
nN . Provided that Ec0 � Ec, the last term in the exponent
in a functional integral can be neglected, and the right-hand
side of Eq. (11) splits into a product of independent
Gaussian integrals. This immediately gives �c ’ NEc. In
the 2D case, the functional integral is determined by a
saddle point configuration of nij. Since the first sum in
the exponent in Eq. (11) is taken over nearest neighbors,
the latter obeys the 2D discrete Laplace equation r2

ijnij �
0. Finally, one finds a general expression:

 �c �

�
Ec minf�c; Lg=d; for 1D arrays;
�Ec=2� ln�minf�c; Lg=d�; for 2D arrays;

(12)

where �c ’ d
���������������
Ec0=Ec

p
is the screening length related to

capacitance to ground [21]. In experiments on 2D films Ec0

is so high that �c can well exceed the sample size L.
The study done on thin films of amorphous indium oxide

InOx near the SIT on the insulating side [4] revealed the
activation behavior of the resistance. A single batch of the
film with a common width 500 �m showed the activation
energy T0 between 3.4 and 13.5 K depending on the length
L between the electrodes. It is noteworthy that T0 well
exceeds the temperature of the superconducting transition
Tc 	 1 K for films on the superconducting side of the SIT.
Plotted in Fig. 2(a) are activation energies, T0 � �c=kB,
extracted from Fig. 4a of [4], vs logL. The logarithmic
scaling of T0 is precisely as Eq. (12) predicts.

The nature of the Coulomb barrier �c and its size scaling
can be understood in terms of the mutual phase locking or
phase synchronization in the Josephson-junction array. In
the Coulomb blockade regime the charge at each junction
is fixed, and, therefore, conjugated phases fluctuate freely.
Yet, the exponentially small dc Josephson current couples
phases of the adjacent junctions to provide a minimal
power dissipation in the array. This establishes a global
phase-synchronized state, and transport occurs as a simul-
taneous thermal activation of Cooper pairs through the
whole array. The probability of such a process in a 1D
array is proportional to �exp��Ec=kBT��N , giving the total
Coulomb barrier as �c ’ EcN. Another way of thinking is
to say that synchronization builds on the large screening
length �c, which allows for the small charge fluctuations at
each junction to interact over the whole system. In this

sense the linear (logarithmic) scaling of �c reflects linear
(logarithmic) growth of the Coulomb energy in 1D (2D)
systems. As a result, synchronization is rigid with respect
to disorder: even large (of the order of the quantity itself,
but Gaussian) fluctuations in Ec, Ec0, and EJ, as well as the
offset charges, are negligible as compared to the huge
magnitude of �c. That is why this scaling of �c holds
even in the amorphous superconducting films [4], where
the granularity is of a self-induced nature [3,22] and the
variations in Josephson coupling strength are small.

The current-voltage characteristic of Eq. (1) is valid as
long as ��c � eV�2 � 2�ckBT. At temperatures of inter-
est, T <�c=kB, this gives an accurate estimate for the
threshold voltage of the regular Josephson-junction array
as

 eVT ’ �c; (13)

with �c from (12). This result holds in disordered systems
as well. However, in both 1D and 2D systems the threshold
voltage scales linearly with the size of the sample, i.e., the
1D scenario works. In the 1D chain the current state forms
at the threshold voltage as a result of the dielectric break-
down where the collective charge transfer over the whole
array occurs. The associated Coulomb energy �c 
�L=d�hEci scales linearly with the system size as long as
the distribution in Ec is not exponentially broad and the
average hEci is well defined. The size dependence of VT on
the sample size was observed on the chain of SQUIDs [10],
schematically shown in the upper panel of Fig. 1. One sees
from Fig. 2d of [10] that for the two largest samples indeed
VT / L. In 2D arrays with disorder the dielectric break-
down occurs along the ‘‘lowest resistance’’ path connect-
ing the leads. This retains a 1D scaling of VT . Conse-
quently, in 2D films the energy eVT is much larger than

FIG. 2 (color online). (a) Activation energy T0 � �c=kB plot-
ted as a function of logarithm of the sample length (squares are
the data from [4]). (b) The experimental data from [3]: activation
energy (circles, left axis) and voltage threshold (squares, right
axis) as functions of the magnetic field B. The lines are accord-
ing to Eq. (14): E2D

J �B�, with values �EJ=Ec � 0:8 and Aloop �

1:4
 10�3 �m2 fits T0 (solid line); VT�B� is the 1D quantity and
is fitted by E1D

J �B� with the same Aloop and ~�EJ=Ec � 0:96
(dashed line) reflecting slightly different geometric factors.
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the activation energy determined from the low-bias resist-
ance behavior (2). Indeed, at the magnetic field 0.7 T, the
ratio eVT=kBT0 	 220 [3]. The dielectric breakdown in 2D
JJA is identical to that in 2D arrays of metallic dots inves-
tigated numerically in [23].

Next, we discuss the effect of the magnetic field on the
activation energy and voltage depinning threshold. The
field modulates the effective Josephson coupling: in the
1D SQUID chain one has E1D

J �B� � EJj cos��f�j, while in
the 2D array E2D

J �B� � EJf1� 4fsin2���1� f�=4�g [24],
where f � eBAloop=�h, Aloop is the area of either the ele-
mental SQUID or the plaquette in the 2D array. The correc-
tion to the Coulomb barrier in the first order perturbation
theory with respect to EJ=Ec follows from (10) and (11):

 �c�B� � �c�1� �EJ�B�=Ec�; (14)

where the parameter � is of the order of unity, and depends
on the geometry of the lattice. The field modulation of
EJ�B� yields nonmonotonic field behaviors of T0 and
VT�B�. Shown in Fig. 2(b) are fits to activation energy T0

and VT vs B dependencies to the experimental data from
[3]. The quantity �EJ=Ec � 0:8 is chosen to match T0�0�
to B � 0 experimental value and reflects that experiments
were carried out in the vicinity of SIT (still allowing
‘‘borderline’’ estimates within the perturbation theory).
The loop area is defined unambiguously by the position
of the maximum in T0 (only the branch corresponding to
0 � f � 1=2 should be taken in E2D

J [24]). With the same
Aloop, the theoretical VT�B� matches the data of [3]
[Fig. 2(b)]. The above fit in the actual absence of fitting
parameters confirms the 2D nature of activation energy and
the 1D scenario of threshold depinning.

In conclusion, we have developed a theory of collective
Cooper-pair transport in the insulating state of one- and
two-dimensional Josephson-junction arrays. We have ob-
tained the Arrhenius low-bias resistance and derived the
corresponding activation energy in the temperature interval
Ec < kBT <�c. We have shown that both the activation
energy and the voltage depinning threshold represent the
dynamic Coulomb barrier �c, controlling collective charge
transfer in the insulating state. In Josephson-junction
chains the activation energy and voltage threshold coincide
and both scale linearly with the chain length. In two-
dimensional arrays the activation energy scales logarithmi-
cally with the sample length, while threshold voltage, VT ,
exhibits the 1D linear scaling, since disorder sets the
dielectric breakdown mechanism of charge depinning.
We have proposed that the physical origin of the energy
gap and its scaling is the mutual phase locking in junction
arrays, which maintains even in disordered systems. We
expect that at temperatures above the energy gap �c=kB the
synchronized state breaks down and collective activation
transport transforms into a variable range hopping as ob-
served in [3,22]. We have demonstrated that modulating
Josephson coupling by the magnetic field leads to a peaked
VT�B� dependence in agreement with the experimental

findings for 1D Josephson arrays [10] and for supercon-
ducting films near the SIT [3,5].
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