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We consider a quantum dot in the regime of the quantum Hall effect, particularly in Laughlin states and
non-Abelian Read-Rezayi states. We find the location of the Coulomb blockade peaks in the conductance
as a function of the area of the dot and the magnetic field. When the magnetic field is fixed and the area of
the dot is varied, the peaks are equally spaced for the Laughlin states. In contrast, non-Abelian statistics is
reflected in modulations of the spacing which depend on the magnetic field.
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The possibility that quasiparticles in certain quantum
Hall systems satisfy non-Abelian statistics has been widely
discussed in the last two decades [1–4]. However, this
exciting theoretical possibility has no experimental support
at present (in fact, only very recently first steps towards
experimental tests of Abelian fractional statistics have been
carried out [5]). Furthermore, only a few predictions have
been put forward that may experimentally identify non-
Abelian quasiparticles. The current Letter contributes to
bridging this gap between theory and experiment by pre-
dicting signatures of non-Abelian statistics on Coulomb
blockade peaks in transport through quantum dots.

Most experiments proposed so far for observing non-
Abelian statistics [6–13] rely on interference of quasipar-
ticle trajectories in a two point contact geometry that
creates Fabry-Perot or Mach-Zehnder interferometers.
The Fabry-Perot interferometer [14], sketched in Fig. 1,
is a Hall bar with two quantum point contacts (QPCs)
introducing backscattering through quasiparticle tunnel-
ling from one edge to the other. In lowest order interference
experiments [8–11], the sensitivity to the statistics of qua-
siparticles originates from the motion of the back-scattered
current around quasiparticles that are localized in the bulk,
in the ‘‘island’’ formed between two interfering trajecto-
ries. The number of these quasiparticles, nis, may be varied
in a controlled way. For fixed nis, signatures of non-
Abelian statistics manifest themselves in the interference
term of the backscattered current. When the number nis

fluctuates in time, signatures of non-Abelian statistics may
be present in the current noise [15].

In this work we study the limit of strong backscattering
by the two point contacts (see Fig. 1). In this limit, the area
between the point contacts becomes a quantum dot, weakly
coupled to the rest of the Hall bar. The low-temperature
conductance through the dot is suppressed by its charging
energy, except in the degeneracy points that give rise to
Coulomb blockade peaks [16]. We show that for non-
Abelian quantum Hall states of the Read-Rezayi series
[2], the position of the peaks in a two-parameter plane of
the area of the dot, S, and the magnetic field, B, is sensitive
to the non-Abelian statistics of the quasiparticles. Here the
origin of the sensitivity is the effect of the localized qua-

siparticles on the spectrum of edge excitations. Such a
sensitivity was already discovered for the � � 5=2 state
in [8], and we will compare our results for the Read-Rezayi
states to those of the � � 5=2 state.

The Read-Rezayi states are expected to occur in the
filling factor range of 2< �< 3. We assume that the point
contacts strongly back-scatter only the edge state of the
uppermost, partially filled Landau level. The quantum dot
is defined then by the edge state of the partially filled
Landau level. At the end of the Letter we discuss the
case in which all edge states are backscattered by the two
point contacts.

For an almost closed quantum dot the number of elec-
trons is quantized to an integer, and the low-voltage low-
temperature conductance through the dot is suppressed
unless the ground state energy of the dot with N electrons
is degenerate with its ground state energy with N � 1
electrons. Thus, Coulomb blockade peaks of the conduc-
tance appear for those values of the area and magnetic field
for which the following equation

 E�N; S; B� � E�N � 1; S; B� (1)

is satisfied for some integer N.
For a clean large (N � 1) dot in a metallic state at zero

magnetic field, where the electronic density is determined
by charge neutrality with a uniform positive background of
density n0, one expects the area that separates consecutive

FIG. 1. Fabry-Perot interferometer in the limit of strong qua-
siparticle backscattering. The dot (a quantum Hall droplet) is
coupled to the leads via electron tunneling, and its area may be
varied using a side modulation gate.
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Coulomb blockade peaks to be �S � e=n0, the area occu-
pied by one electron. This would also be the situation for
the quantum Hall state of noninteracting electrons at � �
1. Below, we start by showing that this is also the expected
spacing for the Abelian Laughlin � � 1=p states (with p
odd). In contrast, for the Read-Rezayi series we find a
much richer structure, that depends on B: while the aver-
age spacing between peaks remains e=n0, the presence of
non-Abelian quasiparticles in the bulk imposes modula-
tions of the spacing which depend on their number, nis. The
latter is determined by the magnetic field.

For all quantum Hall states the bulk is incompressible,
and electronic transport takes place along the edge. The
energies in (1) are then energies of edge modes. The edge
of the Abelian Laughlin states is described [17] by the
action of a chiral free boson (we take @ � 1)

 S � �
1

4��

Z
dtdx�@t’@x’� vc�@x’�2�; (2)

where vc is the velocity of edge excitations. The bosonic
field ’�x� is normalized here such that the electronic
creation operator is eip’�x�, and the electron density along
the edge is given by � � 1

2� @x’. For the electron operator
to be single valued the field ’ must obey the quantization
condition

 ’�L� � ’�0� � 2�n=p: (3)

The total number of electrons on the edge is N � n� �
n=p. Alternatively, the number of quasiparticles is n. Since
the number of electrons in the dot is an integer, the total
number of quasiparticles in the dot (edge and bulk to-
gether), which is n� nis, must be divisible by p.

When the magnetic field B � B0 is such that the filling
fraction is precisely 1=p there are no quasiparticles in the
bulk. The energy is then E � vc

4��

R
dx�@x’�2, which is

minimized by a space-independent ’�x�. As the area of
the dot is varied continuously, the field ’ is restricted by
the quantization condition (3), and therefore may change
only in a discrete way. Therefore, an infinitesimal increase
in the area of the dot violates charge neutrality at the edge,
with an associated energy cost. When the area grows
sufficiently, it becomes energetically favorable to add a
whole electron to the dot. The energy dependence on the
area may then be incorporated into the description (2) by
writing the edge energy as

 Ec �
vc

4��

Z
dx
�
@x’� 2��

B0�S� S0�

L�0

�
2
; (4)

where�0 is the magnetic flux quantum. The total energy is
minimized when the charge density is uniformly spread
along the perimeter of the edge, i.e., when @x’ is
x-independent. With N � 0 defined to be the number of
electrons for a dot with area S0, the energy for N electrons
on the edge is

 Ec�N� �
�vc
�L

�
N � �

B0�S� S0�

�0

�
2
: (5)

Equation (1) reduces to Ec�N� � Ec�N � 1�, and the area
separation �S between its solutions for consecutive values
of N is �S � e=n0. This value is independent of the
magnetic field, as long as the bulk is incompressible: as
the magnetic field is changed from B0 quasiparticles enter
the bulk. The incompressibility of the bulk quantizes their
number to an integer nis. As a consequence, the number of
quasiparticles on the edge, n of Eq. (3), is not necessarily
an integer multiple of p, but rather an integer of the form
‘p� nis, with ‘ an integer. That does not, however, change
the area spacing �S. As we will now see, this is not the case
for non-Abelian states.

While the free chiral boson field theory of Eq. (2) fully
describes the edge of a � � 1=p state, the edge of the
Read-Rezayi non-Abelian states requires also a second
field theory, whose properties we now review. The second
theory is a conformal field theory (CFT) of a neutral field,
and for the � � 2� k=�k� 2� Read-Rezayi state (with
k � 2; 3; 4; . . . ), it is the Zk parafermionic CFT.
Quasiparticles for this state have charge e

k�2 . When the
magnetic field is varied by one flux quantum, k quasipar-
ticles appear; hence, the flux associated with a single
quasiparticle is 2�

ke .
The creation operators of both an electron and a quasi-

particle are then products of two factors. The first, ei�’�z�,
accounts for the flux and the charge associated with the
electron (� � �k� 2�=k), and with the quasiparticle (� �
1=k). The second part is a neutral field labeled by two
quantum numbers �l

m, obeying the restrictions l 2
f0; 1; . . . ; kg, �l

m��l
m�2k��k�l

m�k and l�m 	 0�mod2�.
The integer m is known as the holomorphic charge (or Zk
charge) of the field �l

m. Using the above identifications, the
integer m may be restricted to the range �l < m 
 l.
Fields that deserve special mention are the identity, I �
�0

0, the parafermions  l � �0
2l, and the parafermionic

primary fields, also known as spin fields, �l 	 �l
l, since

the electron creation operator is  1e
i��k�2�=k�’ while the

quasiparticle creation operator is �1ei�1=k�’. The fusion
rules for the parafermion CFT fields are given by [18,19]

 �l�
m��

l�
m� �

Xminfl��l�;2k�l��l�g

l�jl��l�j

�l
m��m�

: (6)

The conformal dimensions of the fields �l
m , which will

be crucial in determining the energy spectrum, are hlm �
l�l�2�
4�k�2� �

m2

4k . The conformal dimension of the bosonic sector
is ��2=2. The short-range product of two fields, known as
the operator product expansion (OPE), is given by

 �l�
m��w��

l�
m��z� �

X
l�

C����z� w��h�
l�
m��m�

; (7)

where the fields appearing on the right hand side are
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determined by Eq. (6), C���’s are constants, and �h �

h
l�
m��m�

� h
l�
m� � h

l�
m� . As a consequence of that relation,

when a field �l�
m� goes around a field �

l�
m� and their fusion

is to a field �
l�
m��m�

, the phase associated is 2��h.
Let us now use this general input from the theory of CFT

to calculate the spectrum of the edge. First we consider the
case when the bulk of the dot does not include any quasi-
particles (nis � 0). The fusion rules (6) imply that k par-
afermions  1 fuse to the identity field. This property of the
Zk theory captures the clustering of the electrons in the
Read-Rezayi states into groups of k electrons [2]. We
imagine starting with the total number of electrons in the
dot being divisible by k, and the system being relaxed into
its ground state. As the number of electrons is varied, the
remainder, which may assume any value between 1 and
k� 1 electrons, accumulates at the edge. The parafer-
mionic state of the edge is then obtained by applying j
operators  1 to the vacuum, with 0 
 j 
 k� 1. The
energy of that state, denoted E , is calculated in the
following way.

The Hilbert space of parafermionic states is constructed
by acting with creation modes of the parafermion  1 on the
vacuum [19–21]. Although the 1� 1 dimensional geome-
try of the edge may be thought of as a cylinder described by
a single coordinate, 	 � vnt� ix, where vn is the velocity
of the neutral sector as it propagates along the edge, it is
easier to work on the punctured plane by performing a
conformal transformation of the coordinates, z � e2�	=L

[22]. On the plane, the parafermion  1 is expanded in
modes as follows:

  1 �
X
m

z�m�h
0
2 1

m; (8)

with h0
2 � 1� 1=k being its conformal dimension. The

allowed values of the index m are determined by the
boundary conditions imposed on  1 by the field it acts on
[18,19]. In this case, since it acts on the vacuum,  1 has
periodic boundary conditions. Therefore, we must have
m 2 Z� 1=k. However, if  1 acts on an edge that already
contains a parafermion, as in  1

m2
 1
m1
jvaci, then when it

encircles the already existing parafermion, it accumulates
also a phase of 2��h0

4 � 2h0
2� � �4�=k. Then, the al-

lowed values of m2 are m2 2 Z� 3=k. Similarly, for an
edge that contains j parafermions, the allowed modes for
the j� 1 parafermion are mj�1 2 Z� �2j� 1�=k.

Since �L0;  1
m� � �m 1

m, where L0 is the Virasoro
algebra generator proportional to the Hamiltonian H �
2�vn
L L0, states created by repetitive applications of  1

modes on the vacuum are eigenstates of the Hamiltonian.
A general state with j parafermions is of the form

  1
�pj��2j�1�=k 

1
�pj�1��2j�3�=k � � � 

1
�p1�1=kjvaci; (9)

where the p’s are integers. The eigenvalue of L0 for such a
state is

Pj
i�1�pi � �2i� 1�=k�. States with negative eigen-

values have zero norm and are unphysical.

In Refs. [20,21] it was shown that by choosing the
integers p in Eq. (9) such that pi�1 � pi � 1, the set of
states obtained is free of zero norm vectors. Therefore the
lowest energy state with j parafermions is obtained by
choosing pi � 1 for all i. Under these constraints, the
lowest allowed value for the energy is therefore

 E �j� �
2�vn
L

j�k� j�
k

: (10)

To obtain the energy of the state with j electrons on the
edge, we must sum E and the contribution of the bosonic
field, Ec, given by Eq. (5) with N � j and � � k=�k� 2�
(the filling fraction of the uppermost partially filled Landau
level).

Given the expression (10), together with Eqs. (1) and (5),
we can extract the area spacing �S,

 �S�
e
n0
�

eL�
2n0�vc

�E �N�2��2E �N�1��E �N��:

(11)

The second term, which is central to our discussion, adds a
k dependent modulation to the average spacing e=n0, and
will have two possible values: since j of Eq. (10) is
restricted to be in the range 0 
 j 
 k� 1 while N is
not, the spacing is given by

 �S1 �
e
n0

�
1� �

vn
vc

2

k

�
(12)

as long as �N � 1�k � 0. When �N � 1�k � 0, the spacing
is larger and given by

 �S2 �
e
n0

�

1� �
vn
vc

�
2�

2

k

��
: (13)

The pattern observed will be a bunching of the Coulomb
blockade peaks into groups of k peaks. Within a group, the
peaks are separated by �S1, while the area spacing be-
tween consecutive groups will be �S2. This k periodicity
of the area spacing reflects the construction of the Read-
Rezayi states from clusters of k electrons.

The effect of nis bulk quasiparticles on the bosonic part
of the edge theory is, similar to the Abelian case, a change
in the boundary conditions on ’. That change does not
affect Ec�N � 1� � Ec�N�. The parafermionic energy E 
depends on nis, since the presence of quasiparticles in the
bulk changes the boundary conditions for the field  1 on
the edge, and hence its spectrum. We now analyze this
effect in detail, and show that it makes �S depend on nis.

According to the fusion rules (6), nis quasiparticles in
the bulk, each created by the operator �1ei�1=k�’, will fuse
to a combination of fields of the form �a

~ne
i�nis=k�’, where

~n � �nis�k 	 nis�modk� and the possible values of a are
determined by (6). Since we start with N�modk� � 0, the
ground state has a � ~n.

When the parafermionic part of the bulk quasiparticles
fuse to �~n

~n � �~n, the edge is not in a vacuum state even
when all electrons on the dot are clustered to clusters of k.
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Rather, the state of the edge is �k�~n
k�~njvaci � �k�~njvaci.

The boundary conditions on a  1 operating on this highest
weight state are then

  1�ze
2�i� � e2�i��~n�k�=k� 1�z�: (14)

Accordingly, the modes m in the expansion (8) are m 2
Z� �k� 1� ~n�=k. Again, the lowest energy state with a
single  1 mode is created by the creation operator with the
smallest value of jmj, with m itself being nonpositive.
Similarly to the nis � 0 case, the allowed values of m
change with the number of parafermions on the edge,
and for the jth parafermion become m 2 Z� �2j� 1�
k� ~n�=k, where the value of j is limited by k� 1. Because
of the presence of a nontrivial Zk charge of the highest
weight state �k�~njvaci, there will be another restriction on
the integers p1; . . . ; pj of Eq. (9): for i > ~n > 0 we must
choose pi � 2 [20].

Again, the energy E for j � �N�k parafermions is
determined by the sum of the indices mi for i � 1; . . . ; j.
This sum depends on ~n and therefore on nis,

 E �j; ~n� �
2�vn
L

h� �
2�vn
L

(
j�~n�j�
k j 
 ~n

�j�k��~n�j�
k j > ~n

; (15)

where h� is the zero point energy of the spectrum, deter-
mined by the conformal dimension of the relevant primary
field �k�~n acting on the vacuum.

Substituting Eq. (15) in Eq. (11) we may study the
spacings between Coulomb blockade peaks through the
properties of the spectrum. We again find that the peaks
bunch into groups; however, this time they do not bunch
into groups of k, but rather into alternating groups of ~n and
k� ~n peaks. The spacing that separates peaks within a
group is again given by Eq. (12), while the spacing that
separates two consecutive groups is

 �S2 �
e
n0

�

1� �
vn
vc

�
1�

2

k

��
: (16)

Therefore, for an odd value of k, the only possible period of
the peak structure is k, while when k is even and �nis�k �
k=2 we find a periodicity of k=2.

For k � 2 this result reproduces the even-odd effect
predicted to occur at � � 5=2 in Ref. [8]: for odd nis the
periodicity will be k=2 � 1, while for even nis it will
become k � 2.

The reflection of non-Abelian statistics in the magnetic
field dependence of �S carries over to the case when the
point contacts back-scatter also the two edge states of the
two filled Landau levels. In that case the peaks we analyzed
are superimposed on peaks associated with tunnelling to
the edge states of the filled levels. The spacing �S of the
latter does not depend on magnetic field, however, and may
therefore be separated from the ones of the partially filled
level [8].

To summarize, we calculated the position of the
Coulomb blockade peaks on the two-parameter plane of

the area and magnetic field. For a fixed value of the
magnetic field, we found that for the Laughlin states, the
spacing between peaks is �S � e=n0. For Read-Rezayi
states the peaks form groups of k peaks, where each group
splits into two subgroups, one containing �nis�k peaks and
the other containing k� �nis�k peaks. Having a period of k
for �S is a consequence of the clustering of electrons,
similar to the case of a superconductor, where the spacings
between Coulomb blockade peaks alternate between two
values due to the energy cost associated with having an
unpaired electron. The dependence on nis and the period-
icity of k=2 occurring for even k and �nis�k � k=2 are
unique aspects of the non-Abelian nature of the
quasiparticles.
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