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We derive constraints on the statistics of the charge transfer between two conductors in the model of
arbitrary time-dependent instant scattering of noninteracting fermions at zero temperature. The constraints
are formulated in terms of analytic properties of the generating function: its zeros must lie on the negative
real axis. This result generalizes existing studies for scattering by a time-independent scatterer under time-
dependent bias voltage.
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I. Introduction.—The concept of full counting statistics
(FCS) for charge transfer in coherent conductors has been
introduced in Ref. [1]. While the average current through
small junctions may usually be understood in classical
terms, its fluctuations reflect the quantum nature of elec-
trons; even in the model of noninteracting electrons, the
fluctuations of the current are nonclassical due to the elec-
tronic Fermi statistics [2]. Generally, one studies the sta-
tistical distribution of the charge transfer between several
conductors coupled by a time-dependent scattering matrix.
In the simplest case (considered in this Letter), there are
only two leads, and therefore the charge transfer may be
statistically described by the probabilities pq to transfer
exactly q electrons from the left to the right lead (here q is
an integer number, either positive or negative). The leads
are assumed to provide a thermal source of incoming
electrons with the Fermi occupation number nF�E�. In
the context of coherent quantum manipulation, one of the
most interesting setups is that of an ‘‘adiabatic pumping’’
where the scattering matrix varies slowly compared to the
characteristic scattering time [3]. Neglecting the scattering
time amounts to considering the scattering matrix to be
independent of the energy E, i.e., local in time [4]. In this
approximation, in the model of noninteracting electrons, a
general expression (the so-called ‘‘determinant formula’’)
for the charge-transfer statistics fpqg in terms of the time
evolution of the single-particle scattering matrix S�t� has
been derived [1,5].

Remarkably, recent progress has been made in under-
standing the implications of the old results for the FCS in
the particular case of the bias voltage applied to a fixed
scatterer [6]. In this ‘‘bias-voltage’’ problem, the scattering
matrix S�t� is changed along a one-dimensional trajectory
parametrized by the U(1) phase ��t� �

R
V�t�dt, where

V�t� is the applied voltage. Within this model, nontrivial
constraints have been derived for the charge-transfer sta-
tistics. Namely, not every set of probabilities fpqg is al-
lowed, but only those for which the zeros of the generating
function,

 ���� �
X�1

q��1

pqei�q; (1)

obey certain restrictions (see our discussion below).
II. Main result.—Inspired by this work [6], we derive

similar (weaker) constraints for the more general case of
adiabatic pumping [3]: an arbitrary time-dependent scat-
tering matrix S�t� with any number of channels. We restrict
our consideration to the case of two conducting leads and
to zero temperature. Under those conditions, we find that
the generating function (1) may take zero values only for a
discrete set of � such that u � ei� belongs to the negative
real axis ��1; 0�. Furthermore, we find that the generating
function ���� (and therefore the full charge-transfer sta-
tistics) is uniquely determined by its zeros uk, up to an
overall integer charge transfer ��u�� uN��u�. These
statements constitute the main finding of our Letter.

As a simple illustration of the derived constraint, con-
sider a charge-transfer statistics with the only nonzero
probabilities p�1;0;1 � 1=3. While this statistics appears
a priori reasonable, it follows from our results that it can
never be produced for any time-dependent scattering ma-
trix S�t� with any number of channels between two con-
ductors (since such a statistics would correspond to the pair
of complex roots u � e�i2�=3).

III. Determinant formula and its regularization.—The
generating function (1), in the approximation of noninter-
acting electrons and of instant scattering, is given by the
determinant formula [1,4,5,7],

 ���� � det�1� nF�Syei�P3Se�i�P3 � 1��; (2)

where S is the time-dependent single-particle scattering
matrix. At each moment of time, S�t� 2 U�2M�, where M
is the number of conducting channels in each of the two
conductors. The operator P3 � diag�1M; 0M� is the projec-
tor counting the charge in the right conductor. The operator
nF is the Fermi distribution function in the conductors. In
this Letter, we consider only the case of zero temperature,
and so nF�E� � ���E� is the step function in the frequency
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representation (in the time representation, nF�t; t
0� �

i=�2��t� t0 � i0��). Since the electrons are noninteract-
ing, we treat them as spinless fermions (the spin may be
trivially included as a channel index).

The determinant (2) is understood as that of an infinite-
dimensional operator acting both in the time domain and in
the 2M-channel space. In its original form (2), the deter-
minant is ill-defined: while the operator tends to 1 at
infinite positive energies, it goes to another unitary matrix,
Syei�P3Se�i�P3 , at infinite negative energies. Therefore the
determinant requires a proper regularization [4]. A consis-
tent way to regularize the determinant has been proposed in
Ref. [8] (their regularization is also equivalent to that used
in Ref. [9]). At zero temperature, the Fermi distribution
operator is a projector n2

F � nF, and the regularized deter-
minant may be written in a particularly simple form [8],

 ���� � detfe�i�P3nF �1� P3 � P3Sei�nFSy�g: (3)

There is a subtle point in calculating the FCS in the
situation where charge counting is performed over a finite
time interval: in this case, there are contributions to the
noise arising from the starting and ending of the measure-
ment, even in the absence of scattering [1,5]. This noise
grows logarithmically with the observation time. To elimi-
nate this contribution from the switching-on and
switching-off, one often considers a periodic signal S�t�
(e.g., by repeating the same signal with a large time pe-
riod). In this periodic formulation, at large number of
periods Np, the asymptotic behavior of ���� is given by
[4] ���� 	 ��0����Np , where �0��� � exp�limNp!1

1
Np



ln����� is the counting statistics per period. The generat-
ing function ����may be computed with the same formula
(3), but with the finite time interval closed into a loop with
the periodic boundary conditions. We further consider this
periodic setup and omit the subscript 0 by using the nota-
tion ���� for the charge-transfer statistics per period.

To write the operators in (3) in the matrix form, one can
perform a Fourier transform in time (introducing discrete
quasienergies). In the quasienergy basis, the operators are
represented as infinite-dimensional discrete matrices. We
assume that the dependence S�t� is sufficiently smooth, so
that it induces only short-range transitions between qua-
sienergies [10]. Then the operator in (3) rapidly approaches
1 away from the Fermi level, and the determinant con-
verges for all values of �. Thus we conclude that ��u� is a
single-valued analytic function of u � ei� for any u 2
Cnf0g.

IV. Determinant formula in z representation.—For our
discussion, it will be convenient to rewrite (3) in a different
form. We parametrize the 2M
 2M unitary S matrix by
two complex 2M
M matrices z and ~z as

 Sy � �zj~z�; (4)

subject to the constraints zyz � ~zy~z � 1M and zy~z � 0M.
These constraints guarantee the unitarity of the S matrix.

Substituting (4) into (3) and using the explicit form of
the charge operator P3, we immediately obtain

 ���� � det�e�i�nFzyei�nFz�: (5)

Notice that the determinant size in the channel space is
M
M in (5) versus 2M
 2M in (3).

Furthermore, ���� has a symmetry with respect
to the right gauge transformation z � zUM�t� for any
time-dependent unitary M
M matrix UM�t�. Under
this transformation, ���� gets multiplied by
det�UMe

�i�nFUyMe
i�nF � � exp�i�Tr�nF � UMnFU

y
M�� �

exp�i�
R dt

2� tr�UMi@tU
y
M��. Because of the periodicity of

UM�t�, the integral in the last expression is an integer
number, and it affects only the overall shift of the total
pumped charge. We conclude that, up to this integer,
the FCS depends only on z modulo U�M� gauge trans-
formations. The latter space may be described as
U�2M�=�U�M� 
U�M�� and contains 2M2 real parame-
ters [instead of 4M2 real parameters in S 2 U�2M�]. It may
be convenient to parametrize it with N̂�t� � 2zzy � 1, a
2M
 2M traceless Hermitian matrix obeying the con-
straint N̂2�t� � 12M (this matrix was introduced in
Ref. [12]). Physically, the gauge invariance described
above corresponds to the independence of FCS on the
scattering separately in the right outgoing states [12].

In addition to gauge rotations, (5) is also insensitive to
global (time-independent) left rotations z � U2Mz, which
correspond to global rotations of N̂�t� [13].

V. Derivation of the main result.—To derive our main
result we rewrite (5) as

 ��u� � det�1� �u�1 � 1�nF��1� �u� 1�nzF�; (6)

where nzF � zynFz, and we have used n2
F � nF.

The first factor in (6) does not involve any information
about the time-dependent scattering. Its only role is to
provide a reference point: the position of the Fermi level.
The dependence on the evolution of S matrix enters
through nzF, which has a M
M matrix structure and tends
to 0M and to 1M at infinite positive and infinite negative
energies, respectively.

We can show that (6) is fully determined by the spectrum
of nzF, up to an overall constant charge transfer. Indeed, we
can rewrite (6) as

 ���� � det��e�i�nFei�n
z
F �fe�i�n

z
F �1� �u� 1�nzF�g�

� det�e�i�nFei�n
z
F � detfe�i�n

z
F �1� �u� 1�nzF�g

� ei�Tr�nzF�nF� detfe�i�n
z
F �1� �u� 1�nzF�g; (7)

where the determinant of the product can be written as the
product of the determinants, since both operators behave
properly (tend to 1M) at infinite energies, and the last
transformation is justified, since nzF � nF rapidly tends to
zero at infinite energies. The trace in the first factor of the
last expression equals the total transferred charge (gener-
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ally noninteger) [8] Tr�nzF � nF� � Q. The second factor
in (7) depends only on the spectrum of nzF.

For a periodic time dependence of S�t�, the operator nzF
may be represented in the quasienergy basis as a discrete
infinite Hermitian matrix. It tends to 0 at large positive
energies and to 1 at large negative energies. Its spectrum is
discrete and takes real values between 0 and 1, with
possible accumulation points at 0 and 1 [14]. If we denote
the eigenvalues of nzF as nz�, Eq. (7) implies the following
expression for the generating function:

 ��u� � ei�Q
Y
�

e�i�n
z
��1� �u� 1�nz��: (8)

Notice that while this formula involves � � �i lnu, it is a
single-valued function of u on C0g. As explained above,
this expression is valid up to a constant integer charge
transfer.

It is obvious from (6) that the spectrum of nzF is in one-
to-one correspondence with the positions of zeros of ��u�,

 u� � 1� �nz��
�1: (9)

Since the spectrum of nzF is real and lies between 0 and 1,
we conclude that the zeros of ��u� must all lie on the
negative real axis. This argument finishes the demonstra-
tion of the main result of this Letter.

VI. Example of forbidden charge transfers.—We can
illustrate our result with an example of a charge transfer
that cannot be realized in our scattering system. Consider
the following particular example of FCS:

 ��u� � 1� 2F� F�u� u�1�; (10)

where 0 � F � 1=2. The corresponding nonvanishing
probabilities p�1 � F, p0 � 1� 2F are normalized and
non-negative. However, the roots of (10) are real only for
F � 1=4. Therefore, the statistics (10) with 1=4<F �
1=2 cannot be produced by any evolution of scattering
matrix at zero temperature.

VII. Allowed charge transfers.—While the condition of
real negative zeros of ��u� is a necessary condition for an
allowed FCS, it is also apparently a sufficient condition.
Indeed, for any finite set of negative real u�, the statistics

 ��u� � uN1

YN2

��1

u� u�
1� u�

(11)

[which is identical to (8) with N1 � Q�
P
�n

z
�] can be

trivially realized in a system with N2 � 1 channels by
using single-particle-transfer pulses as described in
Ref. [4] (one channel per each u� plus one channel for
the overall integer transfer N1).

Moreover, this FCS may also be arbitrarily closely ap-
proximated in a single-channel system by sending individ-
ual well-separated pulses for each of the required zeros,
u�. Indeed, in a single-channel system, the FCS is deter-
mined by the time evolution of the vector TrN̂� on the
two-dimensional sphere, as shown in Ref. [12]). Motion of
this vector along a circular trajectory of a given area (on the

sphere) is equivalent to the ‘‘bias-voltage’’ problem with a
fixed channel transparency determined by the area en-
closed by the contour. This ‘‘bias-voltage’’ problem has
been considered in Ref. [4] where it has been shown that an
arbitrarily sharp Lorentzian voltage pulse produces the
elementary charge transfer ��u� � �u� u��=�1� u��.
By superimposing such pulses, well separated in time,
along circles of different areas, we can approximate the
required statistics (11) arbitrarily close.

Furthermore, since we can make this approximation for
any finite number of roots N2, and the possible infinite sets
of roots have accumulation points only at u� ! 0 and
u� ! �1, we can also approximate arbitrarily close any
statistics (8) with an infinite set of roots, provided they
converge sufficiently rapidly to nz� ! 0 and nz� ! 1 [for
the convergence of (8) it is sufficient to require that nz�
converge not slower than j�j�� with �> 1 at their accu-
mulation points]. We leave it as a mathematical problem to
determine the precise requirements on the convergence and
the conditions under which the generating function (8) may
be reproduced exactly by a suitable evolution of the S
matrix.

VIII. Bias-voltage case.—With this result in mind, we
would like to comment on the existing results for the
problem with a restricted evolution of the scattering ma-
trix, namely, the ‘‘bias-voltage’’ case [6]. In this restricted
problem, the transparencies of the channels are fixed, and
the evolution of the S matrix is determined by the single
parameter ��t� �

R
V�t�dt. The time dependence of z in

this setup is given by z � ei��t�P3z0, where z0 is a fixed
2M
Mmatrix. As follows from the results of Ref. [6], for
this restricted evolution of the scattering matrix, there is an
additional constraint on the positions of u�. Namely, there
are two types of roots u�: ordinary (‘‘typical’’ in notation
of Ref. [6]) and anomalous. Ordinary roots come in
inversion-symmetric pairs �u�; 1=u��. In addition, there
are M anomalous roots, each having the same multiplicity
jWj, where W is the winding number of ��t� (we assume
that it is integer). They are located either at �gi=�1� gi�
or at ��1� gi�=gi, depending on whether W is positive or
negative. Here gi are the channel transparencies given by
the eigenvalues of zy0P3z0.

We can easily rederive this result within our formalism
with a procedure analogous to that in Ref. [6]. Consider for
simplicity only one channel with transparency g. Then

 nzF � �1� g�nF � gn
�
F ; (12)

where n�F � e�i�nFe
i�. The symmetry of the spectrum of

nzF (at zero temperature) can be demonstrated with the use
of the algebra of four operators,

 Q� � nF� n
�
F � 1; Q� � nF� n

�
F ;

Q3 � i�nF;n
�
F � � iQ�Q�; C�Q2

� � 1�Q2
�:

(13)

The operators Q�, Q�, and Q3 anticommute with each
other, and the operatorC commutes with them (this algebra
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relies only on nF and n�F being projectors). Obviously C
also commutes with

 nzF �
1

2
�

1

2
Q� �

�
1

2
� g

�
Q� �

1

2
�

�������������������������������
1

4
� g�1� g�C

s
;

(14)

and they can be diagonalized simultaneously [the last
equality in (14) should be understood as a relation between
eigenvalues, with different sign choices for different eigen-
vectors]. Let � be a common eigenvector of C and nzF with
the eigenvalues C� and nz�, respectively. The vector Q3�,
if nonzero, has the eigenvalue 1� nz�, which produces
[according to (9)] a pair of ordinary roots �u�; 1=u��. If
Q3� � 0, then one easily proves that either Q�� orQ��
is zero. If Q�� � 0, then C� � 0, and this corresponds to
nz� equal to 0 or 1, without any contribution to FCS.
Finally, the zero modes Q�� � 0 produce an anomalous
contribution with C� � 1.

One can prove that, for a phase winding W, there are
exactly jWj zero modes of Q�. Assuming a non-negative
W (without loss of generality), zero modes of Q� must be
simultaneously eigenstates of nF and of n�F with eigen-
values 1 and 0, respectively. Such eigenstates are easily
constructed explicitly by using the decomposition ei��t� �
ei�W!t����t�����t��, where �� are the positive- and
negative-frequency parts, and ! is the driving frequency.
One finds that the space of zero modes is then spanned by
 k � e�ik!t�i���t� for k � 1; 2; . . . ;W. The corresponding
eigenvalue nz� does not have a pair, but is W-fold degen-
erate nz� � 1� g. Similarly, forW < 0, one finds jWj zero
modes of Q� with nF � 0 and n�F � 1, which produces
nz� � g.

In terms of the generating function, the separation into
the inversion-symmetric (ordinary) and anomalous (de-
pending only on the average charge transfer) parts may
be written as (for W � 0)

 ��u� � �1� g�u� 1��W�inv�u�; �inv�u�1� � �inv�u�:

(15)

With some algebraic manipulations, one can also derive an
explicitly inversion-symmetric formula for �inv,

 �inv�u� � det�1� g�1� g��u� u�1 � 2��1� nF�n
�
F �

(16)

(this expression also assumes W � 0). This formula may
be viewed as a compact form of the product over eigen-
values obtained in Ref. [6]. Note that this separation of the
two contributions is specific to the ‘‘bias-voltage’’ case at
zero temperature.

IX. Conclusion.—We have derived constraints on the
charge-transfer statistics between two conductors in the
limit of instant scattering and at zero temperature. Our
findings generalize the results obtained previously for the
case of a fixed scatterer with a time-dependent voltage [6].

The allowed statistics is characterized by negative real
zeros of the characteristic function ��u�. While we have
not performed a similar analysis of the problem at finite
temperature, we conjecture that the singularities of log��u�
remain restricted to the negative real axis even at finite
temperature, but develop a cut instead of a discrete set of
branching points. The available simplest examples of the
charge-transfer statistics at finite temperature support this
conjecture.

Similar to Ref. [6], our result (8) can be interpreted as a
decomposition of the charge transfer into independent
tunneling events—binomial processes. The effective chan-
nel transparencies of these events are the eigenvalues of nzF
depending on the time evolution of the scattering matrix.
This interpretation suggests that the physical origin of this
result lies in the assumed absence of interactions between
electrons and that it may break down once interaction is
taken into account [15].
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