Nonquasiparticle States in Co₂MnSi Evidenced through Magnetic Tunnel Junction Spectroscopy Measurements L. Chioncel, ^{1,2} Y. Sakuraba, ³ E. Arrigoni, ¹ M. I. Katsnelson, ⁴ M. Oogane, ³ Y. Ando, ³ T. Miyazaki, ³ E. Burzo, ⁵ and A. I. Lichtenstein ⁶ ¹Institute of Theoretical Physics, Graz University of Technology, A-8010 Graz, Austria ²Faculty of Science, University of Oradea, RO-410087 Oradea, Romania ³Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan ⁴Institute for Molecules and Materials, Radboud University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands ⁵Babeş-Bolyai University Cluj-Napoca, RO-800084 Cluj-Napoca, Romania ⁶Institute of Theoretical Physics, University of Hamburg, DE-20355 Hamburg, Germany (Received 3 August 2007; published 29 February 2008) We investigate the effects of electronic correlations in the full-Heusler Co_2MnSi , by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements using Co_2MnSi as electrode. Both experimental and theoretical results confirm the existence of so-called nonquasiparticle states and their crucial contribution to the finite-temperature spin polarization in this material. DOI: 10.1103/PhysRevLett.100.086402 PACS numbers: 71.20.Be, 71.10.-w, 71.15.Mb, 75.50.Cc Next generation electronic devices will profit from technologies that control the spin degrees of freedom. Therefore, half-metallic ferromagnets (HMF), in which the majority-spin-density of states (DOS) crosses the Fermi level (E_F) while the minority-spin DOS shows a semiconducting behavior at E_F (or vice versa), can be seen as essential components for tunneling magnetoresistance (TMR) devices. In HMF-based TMR devices the magnetoresistance should, ideally, diverge if the conduction electron spins are 100% spin polarized. It is further expected that if such a HMF could be epitaxially grown on a semiconducting surface, fully polarized (100%) electrons could be possibly injected into the semiconductor. First band-structure calculations performed on the half-Heusler, NiMnSb ($C1_b$ -type structure), predicted a 100% spin polarization [1]. Subsequently, the studies were extended to other half-metallic systems. Of particular interest for realizing magnetic tunneling junctions (MTJ) appears to be the full-Heusler alloy Co_2MnSi ($L2_1$ -type structure). A minority-spin band gap of 0.4 eV has been predicted and a Curie temperature of $T_c = 985$ K and a saturation magnetization of $5\mu_B$ was reported [2]. Some of us [3] recently fabricated magnetic tunnel junctions (MTJ) consisting of highly ordered Co₂MnSi epitaxial bottom electrode, Al-O tunnel barrier, and Co₇₅Fe₂₅ top electrode. A TMR ratio of 159%, at low temperatures and a value of 70% at room temperature, was determined. More recently, MTJ structures consisting of Co₂MnSi/Al-O/Co₂MnSi were fabricated, having a TMR ratio of 570%, at 2 K, the largest one reported to date for an Al-O amorphous tunneling barrier [4]. These experiments reveal the HMF character of Co₂MnSi with a minority-spin band gap and a high decrease of TMR ratio with temperature [5]. In order to understand the large temperature variation of the TMR ratio in Co₂MnSi, it is important to investigate the temperature dependence of its half-metallic density of states in the presence of electron-electron interaction. Zero-temperature band-structure calculations within the framework of density functional theory (DFT) were reported by Galanakis et al. [6]. According to these calculations, the half-metallic character of Co₂MnSi is determined by the existence of a minority-spin gap formed between the triply degenerate Co-Co antibonding t_{2g} and the double degenerate Co-Co antibonding e_g [6] bands. However, standard DFT—local density approximation (LDA) calculations are in general insufficient to describe some important many-body features of HMF, at zero or finite temperatures. One of these effects is the appearance of so-called nonquasiparticle (NQP) states, i.e., states appearing within the minority-spin band gap just above the Fermi level. These states describe low-energy electron excitations for minority spins, which turn out to be possible as superpositions of spin-up electron excitations and virtual magnons [7–9] ("spin-polaron") processes. Therefore, their description require an appropriate treatment of dynamical many-body effects. NQP states have been studied in several half-metals [10–14] by using a combined LDA + DMFT (dynamical mean field theory) approach (for a review, see Ref. [15]). NQP states contribute significantly to the tunneling transport in heterostructures based on HMF [16–18]. At T=0 K, the density of NQP states vanishes at the Fermi level, E_F (in the presence of spin anisotropy at a slightly higher energy $E_F + \hbar \omega_m$, see below), while for T > 0 tails of the NQP states cross the Fermi energy and contribute to the depolarization. In this Letter, we show the crucial importance of nonquasiparticle states for the finite-temperature depolarization in Co₂MnSi. This is achieved by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements at different temperatures in a Co₂MnSi—based MTJ. Our combined experimental and theoretical analysis confirms the presence of NQP states and emphasizes their contribution to the finite-temperature polarization in this material. Band-structure calculations were performed for the halfmetallic Co₂MnSi alloy for the experimental lattice constant a = 5.65 Å. Calculations were performed using a recently developed LSDA + DMFT scheme [19]. Correlation effects in the valence Co and Mn d orbitals are included via an on-site electron-electron interaction in the form $\frac{1}{2}\sum_{i\{m,\sigma\}}U_{mm'm''m'''}c_{im\sigma}^{\dagger}c_{im'\sigma'}^{\dagger}c_{im''\sigma'}c_{im''\sigma'}$. The interaction is treated in the framework of dynamical mean field theory (DMFT) [15], with a spin-polarized T-matrix fluctuation exchange type of impurity solver [20]. Here, $c_{im\sigma}/c_{im\sigma}^{\dagger}$ destroys/creates an electron with spin σ on orbital m on-site i. The Coulomb matrix elements $U_{mm'm''m'''}$ are expressed in the usual way [21] in terms of three Kanamori parameters U, U', and J. Since the static part of the correlation effects is already included in the local spin-density approximation (LSDA), "double counted" terms must be subtracted. To obtain this, we replace $\Sigma_{\sigma}(E)$ with $\Sigma_{\sigma}(E) - \Sigma_{\sigma}(0)$ [22] in all equations of the LSDA + DMFT procedure [15]. Physically, this is related to the fact that DMFT only adds dynamical correlations to the LSDA result. For this reason, it is believed that this kind of double-counting subtraction " $\Sigma(0)$ " is more appropriate for a DMFT treatment of metals than the alternative static "Hartree-Fock" (HF) subtraction [23]. Figure 1 shows the results of DOS calculations using the LSDA and LSDA + DMFT schemes at different temperatures. Realistic values of U for all 3d metals are predicted to vary between 2 and 6-7 eV [15]. We have checked that for values of the U parameters between 2 and 4 eV the spectral weight of NQP states is not significantly changed in agreement with recent calculations [11]. Here, we present results for U = 3 eV and J = 0.9 eV. In order to resolve the LSDA minority-spin gap, a broadening of around 15 K and a k-point mesh of 2304 points was used in the reduced Brillouin zone. The LSDA density of states, i.e., the T = 0 K result, confirms the existence of a minority-spin gap at E_F , in agreement with previous results [6]. In contrast, finite-temperature results obtained within LSDA + DMFT display a broadening of the NQP states across the Fermi energy (Fig. 1) in the minority-spin channel, and a spectral weight redistribution for majority spins. Static noncollinear spin configurations at finite temperatures produce a homogeneous mixture of spin-up and spin-down density of states, in such a way that the proportionality relation between polarization and magnetization is roughly maintained as a function of temperature $\delta P(T) \propto \delta \langle S^z \rangle$ [24]. Previously, this proportionality relation was reproduced in magnetic semiconductors [25], in qualitative FIG. 1 (color online). Spin-resolved density of states of the Co_2MnSi full-Heusler alloy obtained by LSDA and LSDA + DMFT. The LSDA + DMFT results are obtained for U = 3 eV and J = 0.9 eV (in both Co and Mn), and different temperatures. agreement with experimental data [26]. In contrast, for some HMF materials, it was shown by model considerations [18] as well as direct numerical calculations [10,11,14], that the polarization displays a completely different temperature behavior in comparison with the magnetization. In order to confirm experimentally the existence of NQP states in Co₂MnSi and to investigate their temperature dependence, we carried out tunneling spectroscopy measurements for Co₂MnSi-based MTJ. Specifically, the measurements were first carried out for Co₂MnSi/Al-O/Co₂MnSi-MTJ, for which a TMR ratio of 570% at 2 K was achieved in previous studies [5]. A positive bias voltage was applied to the upper Co₂MnSi electrode, in order to control the tunneling of electrons from the lower electrode to the upper one. Figures 2(a) and 2(b) show the bias-voltage dependence of the differential tunneling conductance (dI/dV) in the antiparallel (AP) configuration, and the normalized TMR ratio, respectively. The measurements were conducted at temperatures between 2 and 300 K. At T=2 K, only a very small tunneling conductance is observed below the lowest bias voltage ($V\approx 1$ mV). This is due to the half-metallicity of Co₂MnSi. However, the tunneling conductance rapidly increases in the low-bias region (10 mV < |V| < 150 mV), producing a rapid decrease of the TMR ratio, as can be seen in Fig. 2(b). With increasing temperature, the tunneling conductance around the zero-bias region gradually increases and the steep structure at low bias is gradually lost. These results are consistent with the temperature dependence of the TMR ratios and the saturation magnetization for Co₂MnSi plotted in Fig. 3. Here, the theoretical TMR FIG. 2 (color online). (a) Tunnel conductance for the $Co_2MnSi/Al-O/Co_2MnSi$ antiparallel magnetic tunnel junction and (b) TMR ratio (normalized to T=2K, V=0), as a function of voltage for different temperatures. The inset of panel (a) shows the conductance normalized to zero bias voltage. ratio was obtained from the LDA + DMFT polarization by using Julliere's formula and assuming a temperatureindependent value of 0.5 for the spin polarization of FeCo, as obtained independently from other measurements [27]. Despite its approximate character, this formula reproduces correctly the temperature dependence of the spin polarization as was previously seen in detailed theoretical investigation of the tunneling current in the halfmetallic ferromagnets [17,18]. Moreover, this is the standard formula used to extract the spin polarization from TMR data [28]. The saturation magnetization (M_S) was measured using a SQUID magnetometer for a MgO-sub./Cr/Co₂MnSi film having the same bottom electrode structure as the MTJs. As one can see, M_S values change little in the temperature range 2 K $\leq T \leq$ 300 K (since $T_c \simeq 985$ K this corresponds to $0.002 \le T/T_c \le$ 0.3). In contrast, the spin polarization (and thus the TMR ratio) decrease drastically in the same temperature range. As can be seen from Fig. 3 the experimental temperature dependence of the TMR ratio and of the magnetization is in rather good agreement with our LSDA + DMFT calculation. Moreover, for $T \leq 200$ K, the experimental polarization curve (obtained from the TMR data by inversion of Julliere's formula) is quite well reproduced by the analytic $1 - P(T)/P(0) \propto T \ln T/T^*$ Ref. [18]. Here, T^* represents a crossover temperature \approx $(\Delta/W)^2 T_c$, below which the $\delta P(T) \propto \delta \langle S^z \rangle$ behavior is FIG. 3 (color online). Comparison of the TMR ratio and magnetization (M) as a function of temperature for a FeCo/Al-O/Co₂MnSi tunnel junction as obtained from experimental data and from LSDA + DMFT. Triangle-down/up represents the measured polarization and the fit to the analytic expression $1 - P(T)/P(0) \propto T \ln T/T^*$ [18]. expected. $\Delta = 0.4 \text{ eV}$ is the minority-spin gap, $W \approx 8 \text{ eV}$ the bandwidth, and $T_c \approx 985 \text{ K}$. The value of T^* estimated by this expression ($T^* \approx 2.5 \text{ K}$) is in good agreement with the value $T^* = 2.7 \text{ K}$ obtained from a fit to the experimental data. These facts, combined with the strong temperature dependence of the differential tunneling conductance shown in Fig. 2, clearly support the existence of minority-spin NQP states above the Fermi level. The behavior of dI/dV as a function of bias-voltage V and temperature can be understood by using the schematic picture shown in Fig. 4. Here, the crucial role of NQP states is apparent. In the case of an ideal half-metal at $T \approx 0$ K, no tunneling process can occur in the AP state, as there are no electronic states which can contribute to the tunneling. Upon applying a finite bias voltage $(e|\Delta V| > \hbar\omega_m)$ to the tunnel junctions, a conducting channel for the minority spins opens due to the nonvanishing NQP density of states [Fig. 4(a)]. Here, $\hbar\omega_m$ is the anisotropy gap in the magnon spectrum, below which the density of nonquasiparticle states vanishes [16]. At finite temperatures $(k_B T > \hbar \omega_m)$, NQP states are expected to broaden and to extend across E_F as shown in Fig. 1. Therefore, a finite tunneling conductance occurs even at vanishing bias voltage [Fig. 4(b)], producing a rapid decrease of spin polarization. The NQP picture suggests that in order to improve the performances of Co₂MnSi-based MTJ, special attention should be paid to magnon excitations. This suggests a strategy to improve the performances of Co₂MnSi-based MTJ. The idea is to modify the magnon excitations, while at the same time preserving the electronic properties, i.e., maintaining the gap in the minority channel. One possibility would be to increase the magnetic anisotropy and thus FIG. 4 (color online). Schematic representation of an electron tunneling process at $\Delta V \approx 0$ and at finite bias voltage in a $\text{Co}_2\text{MnSi}/\text{Al-O/Co}_2\text{MnSi}$ magnetic tunnel junction. At $T \approx 0$ K (a), NQP states vanish at E_F , while for T > 0 (b) (see text) NQP states extend across E_F and an additional tunneling channel opens. the magnon gap [29]. This can be achieved by a proper doping with rare-earth atoms in the half-metallic material [29]. Experimental work is in progress. Finally, let us comment on alternative depolarization mechanisms. Dowben *et al.* [24] showed that finite-temperature noncollinearity produces a spin mixing which ultimately leads to a nonvanishing but symmetric DOS around the Fermi level in the gap of the insulating spin channel. In contrast, as discussed above, the low-energy DOS within the minority gap induced by many-body effects (NQP states) appears only above the Fermi level, and is thus strongly asymmetric. In addition, its low-energy part is strongly temperature dependent, and much larger in magnitude than the one produced by noncollinear or spin-orbit effects. Therefore, we expect depolarization due to NQP states to be dominant in comparison with other effects, such as the static noncollinearity [24] or spin-orbit coupling. In summary, we carried out a combined theoretical and experimental study of depolarization effects in half-metallic Co₂MnSi. Our tunneling-conductance measurements in Co₂MnSi-based magnetic tunnel junctions showed for the first time the existence of NQP states above the Fermi level in the minority-spin channel. The behavior of the finite-temperature conductance demonstrates the important role played by NQP states in inducing depolar- ization, an effect which should be carefully considered in designing Co₂MnSi-based MTJ devices. The drastic reduction of the TMR ratio from low to room temperatures is clear evidence of the detrimental effect played by the NQP states on the electron spin polarization. A possible strategy to improve the performances of the Co₂MnSi-based MTJ by increasing the magnon anisotropy was also discussed. This study was supported by the IT Program of the RR2002, the CREST program of the JST and the NEDO. L. C. and E. A. acknowledge financial support by the FWF No. P18505-N16, M. I. K. acknowledges financial support from FOM (The Netherlands). A. I. L. acknowledges financial support from the DFG (Grants No. SFB 668-A3). Useful discussion with Professor R. A. de Groot are appreciated. - [1] R. A. de Groot et al., Phys. Rev. Lett. **50**, 2024 (1983). - [2] M. P. Raphael et al., Appl. Phys. Lett. 79, 4396 (2001). - [3] Y. Sakuraba et al., Appl. Phys. Lett. 89, 052508 (2006). - [4] Y. Sakuraba et al., Appl. Phys. Lett. 88, 192508 (2006). - [5] Y. Sakuraba et al., J. Phys. D 40, 1221 (2007). - [6] I. Galanakis et al., J. Phys. D 39, 765 (2006). - [7] D. M. Edwards and J. A. Hertz, J. Phys. F 3, 2191 (1973). - [8] V. Y. Irkhin and M. I. Katsnelson, J. Phys. Condens. Matter 2, 7151 (1990). - [9] V. Y. Irkhin and M. I. Katsnelson, Phys. Usp. 37, 659 (1994). - [10] L. Chioncel et al., Phys. Rev. B 68, 144425 (2003). - [11] L. Chioncel et al., Phys. Rev. Lett. 96, 137203 (2006). - [12] L. Chioncel et al., Phys. Rev. B 71, 085111 (2005). - [13] L. Chioncel et al., Phys. Rev. Lett. 96, 197203 (2006). - [14] L. Chioncel et al., Phys. Rev. B 75, 140406 (2007). - [15] G. Kotliar *et al.*, Rev. Mod. Phys. **78**, 865 (2006). - [16] V. Y. Irkhin and M. I. Katsnelson, Eur. Phys. J. B 30, 481 (2002). - [17] E. McCann and V.I. Fal'ko, Phys. Rev. B 66, 134424 (2002); 68, 172404 (2003). - [18] V. Y. Irkhin and M. I. Katsnelson, Phys. Rev. B **73**, 104429 (2006). - [19] L. Chioncel et al., Phys. Rev. B 67, 235106 (2003). - [20] M. I. Katsnelson and A. I. Lichtenstein, Eur. Phys. J. B **30**, 9 (2002). - [21] M. Imada et al., Rev. Mod. Phys. 70, 1039 (1998). - [22] A.I. Lichtenstein et al., Phys. Rev. Lett. 87, 067205 (2001). - [23] A. G. Petukhov et al., Phys. Rev. B 67, 153106 (2003). - [24] R. Skomski and P.A. Dowben, Europhys. Lett. 58, 544 (2002). - [25] D. M. Edwards, J. Phys. C 16, L327 (1983). - [26] E. Kisker et al., Phys. Rev. B 18, 2256 (1978). - [27] D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. 77, 720 (2000). - [28] I. Zutic et al., Rev. Mod. Phys. 76, 323 (2004). - [29] J. J. Attema et al., J. Phys. Condens. Matter 16, S5517 (2004).