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We characterize through large-scale simulations the nonlinear elastic response of multiwalled carbon
nanotubes (MWCNTs) in torsion and bending. We identify a unified law consisting of two distinct power
law regimes in the energy-deformation relation. This law encapsulates the complex mechanics of rippling
and is described in terms of elastic constants, a critical length scale, and an anharmonic energy-
deformation exponent. The mechanical response of MWCNTs is found to be strongly size dependent,
in that the critical strain beyond which they behave nonlinearly scales as the inverse of their diameter.
These predictions are consistent with available experimental observations.
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Because of a unique combination of dimensions, geome-
try, mechanical, electronic, and chemical properties, car-
bon nanotubes (CNTs) appear as an attractive component
in nanoscale devices and nanostructured materials.
Mechanically, the graphene wall of nanotubes is arguably
the stiffest and strongest material in nature. Under large
tensile stress, CNTs fail irreversibly through plasticity or
brittle fracture [1]. However, their geometric structure, the
strength of carbon bonds, and a high degree of crystalline
uniformity confers CNTs with a very rich nonlinearly
elastic behavior over wide ranges of mechanical stress
[2]. There is ample experimental evidence that CNTs can
sustain dramatic geometric changes reversibly and cycli-
cally [3]. The use of multiwalled carbon nanotubes
(MWCNTs) as structural components in nanodevices has
been demonstrated [3,4]. Recent CNT-based yarns and
foam materials specifically exploit the resilience and abil-
ity to undergo extremely large deformations of MWCNTs
[5,6].

The experimentally observed deformation morphologies
of CNTs have been interpreted in terms of the linearized
theory of thin shell buckling [2], which studies the onset of
bifurcations from homogeneous deformation states [7].
Beyond the bifurcation point, the post-buckling fully non-
linear regime governs the CNT mechanics. The rippling
deformations (periodic wavelike deformation patterns) ob-
served in bent nanotubes [3,8], which have been shown to
dramatically soften the effective response of thick
MWCNTs [3], are a genuinely nonlinear phenomenon
not explained by linearized buckling theory [9].
Theoretically, the understanding of the post-buckling be-
havior of thin elastic sheets is quite limited and is the topic
of current research [10,11]. The objective of the present
study is to characterize through systematic large-scale
simulations the effective mechanical behavior of realisti-
cally large MWCNTs under torsion and bending, as probed
in nanodevices and materials [3–6]. See [12] for an early
related study resorting to a simplified model of MWCNTs

We present coarse-grained static atomistic simulations
of MWCNTs. The bonded interactions are described

through the Brenner potential [13], a standard for hydro-
carbons known to underestimate the elastic moduli of
graphene. We also use a modified version of this potential
that maintains its functional form, the ground energy, and
the equilibrium bond length of graphene, and exhibits in-
plane and bending elastic moduli very close to ab initio
values [14]. The interwall van der Waals interactions are
modeled with a Lennard-Jones graphitic potential [15] that
produces smooth interwall tangential interactions, in
agreement with experimental observations [16].

The coarse-grained computational method used here
(see [17,18] for the theory and implementation details)
reduces the computational complexity of the atomistic
models by 2 orders of magnitude without loss of accuracy
[19], allowing us to perform systematically high fidelity
simulations of realistically large MWCNTs as found in
devices. The largest system in the present study contains
about 31� 106 atoms, while state of the art molecular
dynamics simulations of MWCNTs contain about
300 000 atoms [20]. We consider accurate boundary con-
ditions for uniform bending, free of spurious boundary
effects [21]. In torsion, the ends of all the walls are ro-
tated relative to each other, modeling an effective load
transfer between the walls at the ends suggested by experi-
ments [4]. In all the simulations, we consider �5; 5�;
�10; 10�; . . . ; �5n; 5n� MWCNTs with n � 10 to n � 40
walls, i.e., thick tubes with minimal internal hollow space
as often found in experiments.

To characterize the global mechanical response of
MWCNTs seen as nanobeams, we study the strain energy
vs deformation relation. As reported in [9], we observe for
all the tested tubes and for wide ranges of deformation two
distinct and robust regimes: a harmonic regime character-
ized by an energy-deformation power law with exponent 2,
and an anharmonic (post-buckling) regime characterized
by a different power law with exponent 1< a< 2. These
two regimes can be clearly observed in the log-log plots of
Figs. 1 and 2. The latter behavior occurs as a consequence
of a nonhomogeneous deformation mode characterized by
periodic ripples of the graphene walls [3,8,9]. In bending,
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there is experimental evidence of these two energy-
deformation regimes [22]. The ripples in torsion are se-
quences of helicoidal ridges and furrows, while in bend-
ing the so-called Yoshimura or diamond pattern develops
in the compressed part of the tubes. Rippling arises as
an efficient mechanism to lower the elastic energy, and
can be understood mechanically as distributed buckling.
The van der Waals forces, irrelevant in the harmonic re-
gime, are responsible for the collective buckling deforma-
tion of the walls in the post-buckling regime. In contrast
with linear elasticity, the existence of two different power
laws breaks the scale invariance of the energy-deformation
relationship. The crossover buckling strain may be viewed
as the critical point of a phase transition [21]. Although the
tubes are subject to severe deformations, the reported
energy-deformation behavior is reversible and free of no-
ticeable hysteresis. The reversibility of the rippling defor-
mations has been documented experimentally [3].

We study now the systematics of this behavior. It was
hinted earlier that the anharmonic exponent showed a
slight dependence on the number of walls [9]. The present
study shows that this dependence is in fact an artifact of the
boundary conditions, carefully avoided here [21]. As
shown in Figs. 1 and 2, the anharmonic exponent is inde-
pendent of the number of walls. The simulations show that
it depends on the deformation mode and on the interatomic
potential, as discussed later. The harmonic scaling can be

easily explained in terms of the linear theory of elasticity.
The stiffness of the graphene wall can be characterized
in terms of two independent in-plane moduli (e.g., the
Young’s modulus Ys and the shear modulus Gs) and the
bending modulus, denoted byCb. We consider here surface
moduli [14]. We consider MWCNTs of length L, with
outer radius R � 15n=�2��A0, where A0 denotes the equi-
librium bond length in graphene. In torsion, the graphene
walls are subject to pure shear. The maximum shear occurs
at the outer wall � � �R=L, where � denotes the applied
rotation angle at the ends of the tube. By defining the
torsional spring constant Kt � �2�Gs=R2�

Pn
i�1 r

3
i , where

ri denote the radii of each wall, the blue fits in Fig. 1(a)
follow from the formula for the strain energy E �
1=2LKt�

2. By approximating the sum in the formula for
Kt by an integral, and denoting the graphene wall spacing
by t, we obtain Kt � �GsR

2=�2t�; hence,

 

~E � E=�LR2� � ��Gs=�4t���
2: (1)

This is the classical scaling of linear elastic torsion of
beams, in which the deformation is characterized by a
nondimensional strain and the relation ~E��� depends on
the geometry of the cross section and the material proper-
ties, but does not depend on the size of the beam. However,
since the energy-twisting angle relation for MWCNTs is
not linearly elastic, the rescaling in Eq. (1) does not nec-
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FIG. 2 (color online). Bent MWCNTs. (a) Strain energy vs
curvature log-log plots for various MWCNTs and (b) data col-
lapse upon appropriate rescaling. The power law fits with ex-
ponents 2 (blue) and 1.42 (red) are shown for illustration. (c) 40-
walled CNT in pure bending, deformed shape (top), Gaussian
curvature map (middle), and energy density map (bottom). The
color scales coincide with those of Fig. 1.
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FIG. 1 (color online). Twisted MWCNTs. (a) Strain energy vs
twisting angle log-log plots for various MWCNTs and (b) data
collapse upon appropriate rescaling. The power law fits with
exponents 2 (blue) and 1.63 (red) are shown for illustration.
(c) Rescaled torque vs twisting angle relation highlighting the
unified law. (d) 35-walled CNT in torsion, deformed shape (top),
Gaussian curvature map (middle; green is zero, red is positive,
blue is negative), and energy density map (bottom; red is high,
blue is low).
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essarily collapse the data for nanotubes of different sizes.
Indeed, upon this rescaling, the curves for all MWCNTs
collapse only in the harmonic regime, while the anhar-
monic branches do not follow a single law. In particular, we
observe that the critical strain scales as �cr / R�1, which
suggests using �R as the strain measure. The resulting
rescaling for the energy-twisting angle relation in the
harmonic regime follows from multiplying Eq. (1) by R2:

 Ê � E=L � ��Gs=�4t����R�2: (2)

Figure 1(b) shows the data collapse for all the tested nano-
tubes upon this rescaling, indicating that a unifying law is
operative. This law is characterized by the elastic factor in
Eq. (2), by the anharmonic exponent a, and by the tran-
sition deformation. The measure of deformation has di-
mensions of length; hence, we denote the critical point by
‘cr � �crR � �crR

2=L. The unified law plotted in red and
blue in Fig. 1(b) is

 E=L � ��Gs=�4t��
�
��R�2 for j�Rj 	 ‘cr

‘2�a
cr j�Rja for j�Rj> ‘cr

(3)

Note carefully that since the measure of deformation has
units of length, this unified law is strongly size dependent:
the thicker the MWCNTs, the smaller the buckling shear
strain. The above law also manifests itself in the data
collapse for the rescaled torque-twisting angle relation
shown in Fig. 1(c), which follows from Torque � @E=@�.

In bending the situation is analogous. The maximum
strain " � �R occurs at diametrically opposed points of
the outer shell with opposite signs, where � denotes the
curvature imposed on the tube. By defining the bending
spring constant Kb � �Ys=R

2 Pn
i�1 r

3
i , the blue fits in

Fig. 2(a) follow from E � 1=2LKb"2. The classical size-
invariant elastic scaling ~E�"� does not collapse the anhar-
monic branches of the data, while the size-dependent
rescaling �E=L� vs ��R2� highlights the unified energy-
curvature law; see Fig. 2(b). Again, the critical bucking
strain scales as "cr / R

�1, and the unified law is com-
pletely described in terms of an elastic factor, here
�Ys=�8t�, the anharmonic exponent, and the critical length
‘cr � �crR2. These observations contrast with the size-
independent critical buckling strain reported for graphite
2D models of MWCNTs [12,23].

The parameters of the unified energy-deformation laws
for the Brenner potential and its modified version are

reported in Table I. Strikingly, the critical length scale is
quite insensitive to the potential and the deformation mode,
while the anharmonic exponent is considerably larger for
twisting than for bending. While the harmonic response
mobilizes either the Young’s modulus (bending) or the
shear modulus (torsion), the anharmonic regime mixes
stretch, shear, and bending of the walls. Hence the depen-
dence of a on the potential is not surprising.

Despite the fact that a full analytical understanding of
complex buckling phenomena such as rippling is not avail-
able, the modern literature provides key ideas to help
understand qualitatively the results above, in particular,
the fact that the anharmonic exponent in torsion is much
larger than that in bending. In the mechanics of thin elastic
sheets, isometric maps are of paramount importance be-
cause they provide deformation mechanisms that avoid in-
plane stretching or shearing, sometimes at the expense of
sharp folds [24]. In materials that exhibit a large in-plane
rigidity as compared to the bending rigidity, e.g., paper or
graphene, localized regions of high curvature are often
energetically favorable. Folds and conical dislocations
with optimal balance between in-plane and bending ener-
gies have been characterized [10]. Recent analytical stud-
ies point out the efficiency of the Yoshimura pattern,
observed in the compressed side of bent nanotubes, in
achieving nearly isometric deformations for compressed
sheets [11]. According to Gauss’s theorema egregium, the
Gaussian curvature of a surface is invariant with respect to
isometries; since for the undeformed configuration of
CNTs the Gaussian curvature vanishes, it serves as a
measure of the degree of local isometry. Figure 2(c) shows
a color map of the Gaussian curvature on a bent MWCNT.
It can be observed that the curvature concentrates along the
ridges (positive) and cones (positive and negative), while
most of the surface has very small curvature. This results in
a strain energy density (energy per unit area) sharply
concentrated at the folds. The rippling pattern that devel-
ops in torsion is far less efficient in approximating an
isometry. Figure 1(d) shows that these boundary conditions
produce a deformation that is nowhere close to isometric:
the helicoidal ridges have positive curvature while the
furrows are negatively curved. The morphological features
are not as sharp as for bending, but they cover a larger area
of the surface of each wall. This results in a significantly
larger portion of tube with large strain energy (note that the
color scales are identical in both figures) and explains
qualitatively the stiffer post-buckling response in torsion.

The scaling of the critical strain in bending, "cr / R
�1,

follows from linearized buckling analysis of cylindrical
shells under specific assumptions, as noted in [2]. This
reference finds excellent agreement between the critical
curvature found in simulations of single-walled CNTs of
small diameter and that predicted by the theory with ‘cr �
0:039 nm. The larger critical length scale we find is proba-
bly due to the stabilization effect provided by inner tubes to

TABLE I. Parameters of the scaling law.

Brennera Modified Brennerb

‘cr (nm) a ‘cr (nm) a

Torsion 0.13 1.68 0.11 1.63
Bending 0.11 1.42 0.10 1.41

aYs � 236 J=m2, Gs � 83 J=m2, Cb � 2:2 eV �A2=atom.
bYs � 340 J=m2, Gs � 148 J=m2, Cb � 3:8 eV �A2=atom.
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the outer shell that buckles first. Even if this agreement is
comforting, it should be emphasized that these scalings of
the critical strain follow from radically different ap-
proaches: here it is obtained as the transition between
two regimes of the energy-deformation relation, one of
which is genuinely nonlinear, while linearized buckling
studies the very onset of the instability and uses hypothesis
of doubtful validity for MWCNTs. In torsion, Yakobson
and co-workers [2] report �cr / R

�3=2 for MWCNTs,
which again follows from linearized buckling theory, in
contrast with �cr / R

�1 for MWCNTs found here.
We now compare the predictions of the unified law

against experiments. Given the limited amount of quanti-
tative data available in the literature, we test whether the
critical length scale characterizing the onset of rippling is
consistent with observations of MWCNTs subject to de-
formation, for which there is evidence of rippling or its
absence. In [3], a 45-walled CNT with R � 15:5 nm and
� � 1=400 nm�1 was observed statically to display rip-
pling. For the same tube in oscillatory motions reaching
� � 1=1200 nm�1, indirect evidence indicated rippling.
Our theory is consistent with these observations since in
the first case R2� � 0:6 nm > ‘cr and in the second R2� �
0:2 nm> ‘cr. The same reference reports on a 12-walled
CNT (R � 4 nm) bent to � � 1=300 nm< ‘cr observed
not to display rippling, in agreement with the theory since
R2� � 0:053 nm < ‘cr. In torsional experiments [4], shear
strains between 2 and 5% for MWCNTs with radii in
between 6 and 17.5 nm were reported, together with indi-
rect signs of nonlinear mechanical behavior. The most
conservative prediction with our theory, �R � 0:02�
6 nm � 0:12 nm, suggests that indeed torsional rippling
occurred in these experiments. In [22], a cantilevered
MWCNT (R � 16:4 nm) was loaded with an atomic force
microscope at a distance of L � 813 nm from the fixed
end, and the force displacement was recorded. The critical
rippling end deflection was measured to be about �cr �
150 nm. The critical rippling curvature, occurring at the
fixed end, can be computed as �cr � 3�cr=L2, resulting in
‘cr � �crR2 � 0:18 nm, to be compared with the data
reported in Table I. Given the uncertainties in this experi-
ment [22] and in the interatomic potentials, we consider the
agreement to be good.

We have characterized the nonlinear mechanical behav-
ior of MWCNTs in pure bending and torsion through
systematic simulations of realistically large systems.
Their mechanics at the mesoscopic level are described by
a size-dependent unified law consisting of two different
power law regimes. Size dependence in materials science
is usually associated with irreversible processes such as
plasticity or fracture. Here, it arises as a consequence of a
reversible geometric instability. The reported results are in
agreement with available data and can improve the inter-
pretation of experiments. Our predictions can be experi-

mentally tested, particularly if mechanical loading is
supplemented by high-resolution microscopy.
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