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Second-Harmonic Generation of Electron-Bernstein Waves in an Inhomogeneous Plasma
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In the injection of electron-Bernstein waves (EBW) into a plasma, proposed for plasma heating and
current drive in over-dense plasma, conversion of the fundamental to its second harmonic is predicted
analytically and observed in computations. The mechanism is traced to the existence of locations where
one can have both wave number and frequency matching between the fundamental and its harmonic.
Further, at such locations, the second harmonic commonly has minimal group velocity, and this allows the
amplitude of the second harmonic to build to values exceeding that of the fundamental at power levels less
than anticipated in experiments. The second-harmonic power can then be deposited at half-harmonic
resonances of the original wave, often far from the desired location of energy deposition. Estimates for the

power at which this is significant are given.
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In over-dense plasma, where the plasma frequency is
some multiple of the electron cyclotron frequency, electro-
magnetic waves at a low multiple of the cyclotron fre-
quency cannot penetrate to the center of the plasma, where
it is desired that the energy be deposited. However, con-
version of the extraordinary (X) or ordinary (O) modes to
an electron-Bernstein wave (EBW) has been identified [1-
5] as a way to get rf energy into an over-dense plasma. For
sufficiently steep density gradient [3] and frequency not
too far from the second harmonic [6], a cutoff-resonance-
cutoff triplet can lead to 100% conversion of incoming
electromagnetic waves to electron-Bernstein modes, which
ultimately deposit the energy and momentum into the
plasma interior. But with the linear analysis well in hand,
it is pressing to understand whether nonlinear effects can
lead to any limitations. In this Letter, we show that non-
linear effects can lead to strong second-harmonic genera-
tion, so strong that much of the incoming wave energy is
converted to an EBW on a higher-frequency branch.
Moreover, in these cases, the energy is deposited at half-
harmonic resonances of the original wave, which are typi-
cally at very different locations from the fundamental.

Nonlinear effects in Bernstein mode propagation have
previously been studied. Parametric decay is known to
occur from both theoretical and experimental studies [7—
9]. In parametric decay, the incoming pump wave with
frequency w, and wave vector k, transfers its energy to
two daughter waves at (k;, w;) and (k,, w,) with lower
frequencies. For this transfer to occur, the matching con-
ditions, wg = w| + w, and ky = k| + k,, must be satis-
fied. It has also been found that the self-interaction of the
ion Bernstein waves can give rise to a virtual, nonpropa-
gating wave (or quasimode) at a harmonic frequency [10—
12]. This quasimode can then transfer energy to the parti-
cles at half-harmonic cyclotron frequencies.

The process considered here differs from both the above
cases. Unlike the first case, the frequency is upshifted; the
energy in the fundamental, with (kf, a)f) is converted to a
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mode at twice the original frequency, i.e., one with (k, =
2ks, wj, = 2wy). Unlike the second case, the conversion is
to a propagating mode, which can carry the energy and
momentum to another location. Furthermore, the process
described here differs from dispersionless harmonic gen-
eration [13], where the harmonics copropagate. Finally, our
case differs in that spatial inhomogeneity is critical to the
process. With spatial inhomogeneity, there is typically a
point where the matching can occur, and because the group
velocity of the harmonic is typically small near that point,
large energy transfer occurs.

Figure 1 illustrates how frequency and wave number
matching occurs in EBW harmonic generation for various
values of the ratio w /() of electron plasma frequency to
electron gyrofrequency. The matching condition can be
written as the two conditions w,/k, = w;/ks; ie., the
waves have the same phase velocity, and w,/w; = 2.
The first condition says that the two points in k-w space
lie on a line passing through the origin. For a vertical line,
the ratio of frequencies of the third branch to the first
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FIG. 1 (color online). Dispersion curves of EBWs for

w,/Q, =3.5.
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branch is less than 2, while as the slope goes to zero, the
ratio approached 3. Thus, there is a solution at intermediate
phase velocity where the ratio is 2 and matching to the
second harmonic can occur.

To reveal the second harmonic generation in a real
space, we take the computational domain as: simulation
size L, = 0.3 m. The density given by n,(x) = n {1 —
cos[(x — xedge)/(Lx - xedge)]}/za where Xedge = 0.1 m
and n, = 1.8 X 10'® m™3. Electron temperature 7T, ~
200 eV, magnetic field B = 0.05 T, incident frequency
fo ~ 2.5 GHz. The density and frequency profiles are
shown in Fig. 2.

Figure 3 shows the corresponding dispersion curves in
phase space (k,, ). Plotted are k/(x, w), 2ks(x, ), and
k;(x, 2w). Where the crossing of the dashed and dotted
lines occurs, one has matching, i.e., 2k,(x, w) = k;(x, 2w),
and potentially strong transfer.

To estimate the power level at which second-harmonic
generation occurs, we consider the mode coupling equa-
tion [14],

d(wpep) 0A,

1 9 1d(wyen)
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2 9x| ok, } " wr (D
for plasma inhomogeneous in the x direction. In this equa-
tion, &, = &(wy, k;,) is the dielectric function. A, and A,
are the wave amplitude of the fundamental and harmonic,
respectively. The coupling coefficient M, is given by
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with the bracket being a local spatial average. In this
equation, the wave phases are ¢y = [} k;dx', and ¢, =
[ kpdx', where x. is the position where the resonant
coupling takes place. In practice, the local spatial average
is not needed, as upon integration in space, non resonant
regions, where that term is highly oscillatory, give no net
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FIG. 2. (a) Simulation model and the plasma density profile,

(b) normalized frequencies with the resonant coupling layer
indicated.

contribution to the integral. The expression for U (kf, w f)
will be presented elsewhere. We find numerically for our
parameters that U ~ 0.5, and so (w2/Q2)U =1 for our
over-dense plasmas. In addition, the coupling typically
occurs where the wave number k,(2w) is rapidly rising,
and so the first and second terms in Eq. (1) are comparable.
Hence, we can estimate using the second term, for which
we use 9%(w,g;,)/9xdk;, ~ w,/(kL,). One thus obtains

Ah ~ qe 2
L, mV? Ay ®)
So as the pump field A, > m,V?/(q,L,), by Eq. (3), the
field of the second-harmonic EBW will exceed the fun-
damental EBW. The corresponding value of the power is
P ~0.5n,T,(Ap/L,)?w(de/0k)S, where S is the cross
sectional area of the incoming radiation. We consider the
parameters for proposed EBW experiments on the National
Spherical Torus Experiment (NSTX), near the plasma
edge, where n,~5X 10" m™3, T,~200eV, B=
02T, fo~12GHz, L,~ 0.4 m, and S~ 0.0036 m~3
for an S-band waveguide. Hence, Ph ~ 40 kW, less than
planned values of 75 or so kW.

Computer simulations using the VORPAL [15] computa-
tional framework illustrate this process and allow accurate
computations time and the field values at which harmonic
generation occurs. Our simulations were two-dimensional,
with x the direction into the plasma and y (the direction
along the static magnetic field) being the second simulated
direction. The nonsimulated direction, z, is the vertical
direction, equivalent to the poloidal direction in toroidal
geometry. The incident (X) wave is linearly polarized in
the z direction and has the form E_(x = 0) = Ey(1 —
e “)2sin(wyt), with a=0.02w, and E;=4X
10* V/m. The ratio of the incident wave energy density
and the electron thermal energy density near the funda-
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FIG. 3. EBW dispersion curves k(x, w) (solid line), 2k(x, w)
(light dashed line), and k(x, 2w) (heavy dashed line). Circles are
the measured values of k from the simulation for the fundamen-
tal. Squares the measure values of k from the simulation for the
harmonic.
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FIG. 4. Spatial distribution of the electrostatic fields (E,) at the
driving frequency [(a) and (b)] and its second harmonic [(c) and
(d)] at t = 245/ w, and 454/w,. The location of the resonant
coupling is indicated in (a) by the dashed line.

mental upper hybrid resonance (UHR) is about 0.02. To
eliminate the noise issues of PIC at these parameters, the
o f method [6,16,17] (an option in VORPAL) was used.

Second-harmonic generation was immediately apparent
in the simulation. Through local Fourier analysis, we ex-
tracted the amplitudes at the first and second harmonics.
These are shown in Fig. 4, where one sees that initially the
second-harmonic amplitude is present around the coupling
point x = (0.145 in Figs. 3 and 4. Later in time, the second
harmonic grows and propagates into the plasma. Through
spatially local Fourier analysis [6], we computed the local
wave number for the perturbations. Those are plotted in
Fig. 3 and agree well with theory.

The correct variation with power was seen through
multiple simulations. These results are shown in Fig. 5.
This figure shows that the incoming power decreases as it
passes through the coupling point, and that the amplitude
of the second harmonic at any one time is proportional to
the square of the fundamental amplitude, as expected from
Eq. (3).

The previous simulations were carried out with constant
magnetic field to illustrate the process. However, for ab-
sorption, one must have a varying magnetic field so that the
mode propagates to a resonance, where it is absorbed. In
this case, the mode energy can end up deposited at a
different location. As seen in Fig. 1, if the magnetic field
increases as the incident wave propagates into the plasma,
the fundamental might be resonant at the cyclotron fre-
quency; meanwhile, the second harmonic might have reso-
nance at three times the cyclotron frequency. Thus, while
the fundamental would deposit its energy at w = (1, the
second harmonic deposits its energy at 2w = 3Q, or (), =
2/3w, a different location.
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FIG. 5. (a) Logarithm of |E,| vs x at the driving frequency

from different incident fields, E, = 2 X 10%, 4 X 10*, 5 X 10,
6 X 10*, and 8 X 10* V/m (from bottom to top). (b)—(c) show
the amplitude of the second EBW vs the square of the amplitude
of the fundamental EBW from the &f simulations (circles) at
x = 0.1456 m, 0.1473 m, and 0.1489 m, respectively.

To illustrate this effect, we carried out simulations as
before except with a spatially varying magnetic field, such
that the fundamental now is resonant at x = 0.185 m, and
the field decreases to the left so that the resonance (), =
2/3w occurs at x = 0.12 m, while the resonance ), = 2w
occurs farther in, at x = 0.27 m. The resulting phase space
is shown in Fig. 6. This diagram shows a second-harmonic
wave to the left of the resonance, ), = 2/3w. In addition,
to the right of that resonance the second harmonic can
propagate by being on one of the other branches of
Fig. 1. The propagating mode between the Q, = 2/3w
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FIG. 6 (color online). Dispersion curves for pump EBW (cir-
cle) and second-harmonic EBW (diamond). The dotted line
indicates the wave number twice the fundamental wave, and
the cyclotron resonance layers are marked.
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FIG. 7 (color online). Spatial distribution of the electrostatic
fields (E,) at the driving frequency [(a)—(c)] and its second
harmonic [(d)—(f)] at t = 252/ w,, 532/ w,, and 1405/ w, re-
spectively. The cyclotron resonance layers 2w, = 3(), and
wy = , are indicated in (a) and (d) by the dashed and dotted
lines, respectively.

and the fundamental resonance corresponds to the second
branch in Fig. 1, as it is twice the frequency and resonates
at twice the gyrofrequency.

Figure 7 shows that indeed a second-harmonic field is
generated outside the (), = 2/3w resonance. This con-
firms that energy can be deposited in unexpected locations
due to second-harmonic generation. Interestingly, there is
significant harmonic generation at later times near the
resonance of the fundamental. We expect that this is due
to strong nonlinearities that are present at resonance and
the fact that there is a propagating second harmonic at this

FIG. 8 (color online). Time history of u2 = (V,/V,)? at
(a) 1 = 252/ wq, (b) 532/ @y, and (c) 1405/ w,.

location as well. In addition, the need for k-matching goes
away, as the WKB approximation fails there.

The heating is visible in Fig. 8 which plots the square of
the velocity versus position. A caveat is that the heating in
these simulations is much greater than it would be in an
experiment, where the deposited energy spreads out poloi-
dally and toroidally due to parallel transport. Nevertheless,
this plot shows comparable deposition of energy at the
expected resonance as well as the 3/2 resonance of the
second harmonic.

In summary, we have shown analytically and through
computation that second-harmonic generations of electron-
Bernstein waves in inhomogeneous plasmas can be signifi-
cant at power levels planned for experiments, even though
the power density is much smaller than plasma thermal
energy density. Consequently, the amplitude of the har-
monic mode can exceed the fundamental, and the wave
power can end up absorbed at half electron cyclotron
harmonic frequencies—at locations very different from
what would expect otherwise. While not presented here,
we mention that while this work concentrated on X-B
mode conversion, we have seen some second-harmonic
generation in O-X-B mode conversion as well, but more
research is needed to understand the importance of second-
harmonic generation in that process.
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