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Absence of Wave Packet Diffusion in Disordered Nonlinear Systems
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We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear
Schrodinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial
conditions such that the second moment of the norm and energy density distributions diverges with time.
We find that the participation number of a wave packet does not diverge simultaneously. We prove this
result analytically for norm-conserving models and strong enough nonlinearity. After long times we find a
distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic
dynamics. Assuming this result holds for any initially localized wave packet, we rule out the possibility of
slow energy diffusion. The dynamical state could approach a quasiperiodic solution (Kolmogorov-Arnold-

Moser torus) in the long time limit.
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It is well known that Anderson localization occurs for a
one-dimensional linear system with uncorrelated random
potential. Since all the linear eigenmodes—Anderson
modes (AMs)—are localized, any wave packet which is
initially localized remains localized for all time. Therefore,
there is no energy diffusion [1]. When nonlinearities are
added to such models, AMs interact with each other, giving
rise to more complex situations [2]. Recently, experiments
were performed on light propagation in spatially random
nonlinear optical media [3] and on the expansion of a
Bose-Einstein condensate in a random optical potential
[4,5] (see also related theoterical studies [6,7]).

Numerical studies of wave packet propagation in several
models showed that the second moment of the norm or
energy distribution grows subdiffusively in time as * [§—
10], with « in the range 0.3-0.4, though not being accu-
rately determined. The conclusion was that the initial
excitation will completely delocalize for infinite times. A
corresponding situation has been studied in the simpler
case of spatially periodic nonlinear systems. The latter
support discrete breathers (DBs), which are spatially lo-
calized time-periodic solutions [11] with frequencies out-
side the frequency spectrum of the linear system. The
temporal evolution of a localized wave packet leads to
the formation of a DB, while a part of the energy of the
wave packet is radiated ballistically to infinity (in the form
of weakly nonlinear plane waves) [12]. In that case, the
second moment of the energy density distribution diverges
as 12, falsely suggesting complete delocalization. The par-
ticipation number P of the norm or energy distribution (or
similar quantities) is a well-known measure of the degree
of localization [13]. In the case of a periodic nonlinear
lattice, P will saturate at a finite value, correctly indicating
the formation of a DB.

For nonlinear random systems it was proven rigorously
that AMs survive in the presence of nonlinearities as
spatially localized and time-periodic solutions [14] with
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frequencies which depend on the amplitude of the mode.
The allowed frequencies form a fat Cantor set (with finite
measure) whose density becomes unity for weak nonline-
arity. They are located inside the frequency spectrum of the
linear system. Numerical techniques for obtaining these
(dynamically stable) intraband DB solutions at computer
accuracy were developed [15]. When they are chosen as an
initial wave packet, they persist for infinite time and there
is no diffusion at all.

Here we analyze carefully the evolution of the partici-
pation number of wave packets as a function of time, in
situations where subdiffusion is claimed to exist [§—10].
We study two models. The Hamiltonian of the disordered
discrete nonlinear Schrodinger equation (DNLS)

5-[D = Z[Enllvynl2 - %Blwnﬁ - V(l//n+l¢: + (r//:+llr//n)]
ey

with complex variables t,. The random on-site ener-
gies €, are chosen uniformly from the interval [— %, ¥].
The equations of motion are generated by ¢, =
OH ,/9(iy¥). We choose B =1 and V = —1 here and
note that varying the norm of the initial wave packet is
strictly equivalent to varying 3.

The Hamiltonian of the quartic Klein-Gordon chain
(KG) is

2 & 1 Vv

Hie= 35+ S+ geud 5 ey~ @
The equations of motion are ii, = —dH g /du,, &, = 1 +
e,W=1),and g = 1.

For B8 = g = 0 both models are reduced to the linear
eigenvalue problem AA, = €,A, — V(A4 + A,_1). The
eigenvectors A, are the AMs, and the eigenvalues A, are
the frequencies of the AMs for the DNLS, while the KG

modes have frequencies w, = /A, + 1 + 2V.
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Hamiltonian (1) [unlike (2)], in addition to conserving
the energy, also conserves the total norm S = 5, [, |*> =
(lip). We use this norm conservation for proving rigor-
ously that initially localized wave packets with a large
enough amplitude cannot spread to arbitrarily small am-
plitudes. The consequence is that a part of the initial energy
must remain well focused at all times.

This proof is inspired by [16]. We split the total energy
H p, = (Y|L|¢) + Hyy into the sum of its quadratic term
of order 2 and its nonlinear terms of order strictly higher
than 2. Then, L is a linear operator which is bounded from
below (and above). In our specific example, we have
WILlY) = 0,yly) = ©,S, where w, =-2-% is
the lowest eigenvalue of L. Otherwise, the higher order
nonlinear terms have to be strictly negative.

If we assume that the wave packet amplitudes spread to
zero at infinite time, we have lim,_ . (sup,|¢,|) = 0.
Then 1imt—>+oo(zn|(r//n|4) < limt—>+oo(supn|’wb)21|) X
CLlgl?) =0 since S=Y3,l¢,> is time invariant.
Consequently , for t— +o we have FH . =0 and
Hp=w,5,|4,> =w,S. Since H |, and S are both
time invariant, this inequality should be fulfilled at all
times. However, when the initial amplitude A of the wave
packet is large enough, it cannot be initially fulfilled be-
cause the nonlinear energy diverges as —A* while the total
norm diverges as A® only. For example, a wave packet
initially at a site 0 (¢, = 0 for n # 0 and ¢, = +/A) has
energy H p = €yA* — 1A%, Consequently, the above in-
equality is not fulfilled when A% > —2(w,, — €;) > 0.
Thus such an initial wave packet cannot spread to zero
amplitudes at infinite time.

This proof is valid for DNLS models with any W (in-
cluding the periodic case) and any lattice dimension and
can be easily extended to larger classes of DNLS models
where the nonlinear terms are either strictly negative, or
strictly positive. Note that the large amplitude regime,
where we prove that complete energy diffusion is impos-
sible in DNLS models, is precisely the one where subdif-
fusion is claimed to completely delocalize the wave packet
[10]. Thus we disprove these claims.

We performed extensive numerical simulations and
characterized the wave packet spreading both in real space
for DNLS and normal mode space (Anderson space or AS)
for KG. We used initial wave packets with all the energy
localized on a single site ng, or single AM, or combina-
tions, close to ny. Nonlinearity induces diffusion in
Anderson space, where each AM is characterized by an
amplitude a, and momentum a,. We analyze distributions
z; = 0 using the second moment my, = 3 /(I — [y)*z; and
the participation number P = (3 ,z,)?/3 ,z7, which mea-
sures the number of the strongest excited sites in z; [13].
We order the AMs in space by increasing value of the
center-of-norm coordinate X, = Y ,nA2. In the results
presented here, for the DNLS z, = |#,|*> is the norm
density in real space, and for the KG z, =a2/2 +

wlal/2 is the (harmonic) energy density in AS. The

system size was N = 1000 for KG, and N = 2000 for
DNLS. Excitations did not reach the boundaries during
the integration time, and results are unchanged when fur-
ther increasing N.

We show in Fig. 1 the KG energy distribution in AS for a
single site excitation with energy £ = 1, and V = (.25 at
times t = 6 X 107, 1.2 X 103%. Two rather strongly excited
modes are surviving almost unchanged on these time
scales. The insets show their eigenvectors, which are well
localized, and practically do not overlap.

The same distributions on a logarithmic scale (KG and
DNLS) show a chapeau of weaker excited AMs, with
exponential tails due to its finite width (Fig. 2). This
chapeau is perhaps slowly growing. The subdiffusive
growth of the second moment at these times (see Fig. 3)
is mainly due to weak excitation of tail modes.

The participation number P(7) is plotted in Fig. 3 for the
same runs. We observe no growth. P fluctuates around a
value of 7-10, confirming the results in Fig. 1, that we
observe a localized state, similar to a DB. Assume that the
rest of the weakly excited modes continues to subdiffuse in
the chapeau. We use a modified distribution z,, for the KG
run, where the 10 strongest mode contributions are zeroed
(top panel, green curve). The weak mode participation
number is now fluctuating around 70, but again does not
grow. Therefore, the chapeau appears not to diffuse, and
the observed growth of m, ~ %394 is not related to a
delocalization process. Instead, we find that the packet
does not delocalize. Indeed, assuming that the chapeau
homogeneously spreads in a subdiffusive way as claimed,
it follows that P(r) ~ t*/2, which clearly contradicts our
observations. We repeated these runs with various initial
conditions and disorder realizations with similar results.
However, the localization pattern (Fig. 1), and the observed
averaged participation number P, fluctuate. Performing an
averaging of the final distribution over several realizations
[8—10] will therefore completely smear out the sharp lo-
calization patterns in the distributions. Closer inspection of
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FIG. 1 (color online). KG: energy distribution at t = 6 X 107
(black solid line) and ¢t = 1.2 X 103 (red dashed line) in AS.
Initial single site excitation with energy £ = 1, V = 0.25. Insets:
profiles of the strongest excited AMs in real space.
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FIG. 2 (color online). Same as in Fig. 1 but on a logarithmic
scale. Top panel: KG, r = 1.2 X 108, AS. Bottom panel: DNLS,
W=4,r= 12X 108, real space.

the evolution of m, shows that the exponent « is strongly
depending on the time intervals of study, and also on the
given disorder realization. There are some indications
suggesting that a might decay at long time and even that
m,(t) may saturate, but further clarification may call for
very extensive numerical investigations.

Finally we calculated the Fourier transform I(w) of P(¢)
(after t =2 X 107, over an interval of At = 2000), see
Fig. 4. We find a quasiperiodic spectrum, which is close
to periodic, with no hints of a chaos-induced continuous
part. For the KG case the energy densities are quadratic
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FIG. 3 (color online). P and m, vs time, on logarithmic scale.
Parameters as in Fig. 2. Top panel: KG, AS. Bottom panel:
DNLS, real space.

forms of the AM coordinates; thus the main peak position
w = 3 corresponds to a frequency w = 1.5 for the AM
coordinate dependence, which coincides with the frequen-
cies of the strong excited Anderson modes in Fig. 1.

Our main result is that in both models (1) and (2),
whatever the initial wave packet is (even if it is not ful-
filling the conditions for our theorem), and irrespective of
the model parameters and the disorder realization, the
participation number does not diverge as a function of
time as it should in case of subdiffusion (as 7%/?) but
instead fluctuates between finite upper and lower bounds.

Let us now propose an interpretation of our observa-
tions. First, it is useful to recall the wave packet behavior in
the absence of disorder. When its amplitude is large
enough for generating a DB, there is a transient dynamical
state which is more or less chaotic, with a broad band time-
Fourier spectrum overlapping the spectrum of the linear
system. Because of that, a part of the energy of the wave
packet is radiated to infinity. With that, the remaining DB-
like excitation becomes quasiperiodic first, and finally, it
approaches an equidistant spectrum of periodic motion,
which completely stops further radiation. The energy
which has been emitted spreads towards infinity.
Therefore, there is a limit profile which is a localized
time-periodic solution—an exact DB. This is the only
possibility for the limit profile, in order to avoid radiation.
This is an example where the initial wave packet self-
organizes in order to stop radiation.

When the system is both random and nonlinear, radia-
tion into the linear spectrum is impossible due to Anderson
localization. Nevertheless, the same process starts as be-
fore, but the energy emitted by the initial wave packet
cannot spread towards infinity since the participation num-
ber (full and partial) does not diverge. The following
cascading scenario may be true. The core of the wave
packet emits a part of its energy which remains within
the linear localization length nearby the initial wave packet
(due to the nonlinearity-induced coupling between the
AMs). The same process should repeat for the emitted
energy. A part of it remains localized while another part
is reemitted a bit farther from the central site within the
localization length and so on. This process of reemission
repeats forever and generates a tail for the wave packet
which will become much more extended than the localiza-
tion length. The central amplitude of the wave packet does
not tend to zero. The process of energy reemission slows
down when the amplitude at the edge of the tail becomes
small which explains the very slow numerical conver-
gence. The final result is that at infinite time, the energy
(or norm) distribution should converge to a nonvanishing
limit profile which is summable since energy (or norm) is
conserved. However, it may or may not have a finite second
moment, which makes the question of the evolution of the
second moment secondary. Unlike the standard DB case in
spatially periodic systems, the limit profile is not a time-
periodic solution.
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FIG. 4. I(w) for KG and DNLS. Parameters as in Fig. 3. Inset:
magnification of the main peak.

It was proven rigorously [17-19] that stable spatially
localized quasiperiodic solutions with finite energy exist in
similar nonlinear models with infinitely many degrees of
freedom without or with degenerate linear spectrum. These
Kolmogorov-Arnold-Moser (KAM) tori are quasiperiodic
DBs which are combinations of Anderson modes surviving
in the presence of nonlinearity. Indeed, we find that the
Fourier spectrum of the wave packet dynamics becomes
quasiperiodic, with narrow peaks and a small background
as time grows, suggesting the motion tends to become
quasiperiodic (Fig. 4).

If the limit profile becomes a KAM torus, we should also
observe that the largest Lyapunov exponent tends to O as
t — +oo, Indeed, we find that this Lyapunov exponent
drops rapidly during the first expansion part of the wave
packet, and slowly further decays, with characteristic val-
ues of 10™# at the end of our simulations. The correspond-
ing time scale is 10* and 4 orders of magnitude smaller
than the simulation times. No chaotic dynamics is observ-
able, and we think that the convergence to the final KAM
torus is very slow because the surrounding KAM tori are
expected to become dense. We should even expect to enter
the regime of Arnol’d diffusion which is expected to be
very slow and difficult to investigate both numerically and
analytically.

Note that this convergence to a quasiperiodic limit pro-
file can only occur in infinite systems because if the system
is finite, the regularization process of the initially chaotic
trajectories ends when the packet tails reach the edge of the
box. Then, we should expect to get equipartition of the en-
ergy after a sufficiently large time and a trajectory which
remains chaotic with a nonzero largest Lyapunov exponent.

In summary, we have proved by a rigorous analytical
argument, and completed by numerical investigations of

the participation number, that a wave packet in a random
nonlinear system does not spread ad infinitum. A limiting
quasiperiodic profile is approached, and the slow increase
of the second moment of the energy/norm distribution does
not violate these findings. It is an open question whether
the limiting profile will have a finite or infinite second
moment. Thus, we observe absence of diffusion in non-
linear disordered systems. Note that this conclusion can be
equally well applied to higher dimensional systems, pro-
vided all AMs are localized.
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