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Vibrational energy flows unevenly in molecules, repeatedly going back and forth between trapping and
roaming. We identify bottlenecks between diffusive and chaotic behavior, and describe generic mecha-
nisms of these transitions, taking the carbonyl sulfide molecule OCS as a case study. The bottlenecks are
found to be lower-dimensional tori; their bifurcations and unstable manifolds govern the transition
mechanisms.

DOI: 10.1103/PhysRevLett.100.083001 PACS numbers: 33.15.Hp, 34.10.+x, 82.20.Db, 82.20.Nk

Chemical reactions usually proceed through a complex
choreography of energy flow processes that deliver the
needed vibrational energy to the reactive mode. The man-
ner and time in which energy travels determine the out-
come of the reaction and the properties of the products. The
conventional wisdom concerning this fundamental process
is that vibrational energy travels very fast and, well before
a reaction takes place, distributes itself statistically among
the modes of the molecule, assumed to resemble an en-
semble of coupled oscillators. However, there is increasing
evidence that the approach to equilibrium usually proceeds
more slowly than predicted by statistical theories [1]—and
it is also nonuniform, showing intriguing fits and starts.
This anomalous diffusion is caused by variety of phase
space structures, such as resonant islands or tori that
strongly slow down the trajectories passing nearby [2,3]
and therefore are said to be ‘‘sticky’’ [4]. To date, the
theories so successfully applied in pioneering works [5,6]
to lower-dimensional systems have not been extended
beyond 2 degrees of freedom due to severe technical
difficulties [7].

In this Letter we identify a family of bottlenecks (which
differ from conventional sticky structures in their lack of
stability), using the OCS molecule as a case study. How-
ever, our findings are not specific to this molecule, indeed,
they are not specific to molecules at all: they are applicable
to all Hamiltonian systems with more than 2 degrees of
freedom and ‘‘mixed’’ dynamics (where order and chaos
coexist). The earliest investigations in this subject involved
mappings, toy models, and variants of galactic Hamilton-
ians [4]. More recent examples from physics include the
dynamical evolution of Mars-crossing asteroids [8], super-
radiant instabilities in atomic gases [9], and the approach to
equilibrium in systems with long-range interactions [10].

Collinear (i.e., 2 degree-of-freedom) models of OCS
have served as a traditional test bed for studying intra-
molecular dynamics in the chaotic regime [11] and these
classical findings have been confirmed in parallel quantal
wave packet calculations [12]. In contrast, we use a
Hamiltonian involving three strongly coupled degrees of
freedom, namely, two interatomic distances R1 and R2, and

a bending angle � (with their canonically conjugate mo-
menta P1,P2, and P�). The interaction potential consists of
Morse potentials for each diatomic pair and a coupling
potential of the Sorbie-Murrell form [11,13]. These details
aside, there is nothing special about this potential energy
surface (other than being very well known). Its relevant
feature is that the three modes are so strongly coupled that
the system does not reduce to a lower-dimensional system,
a widely shared characteristic of excited molecular sys-
tems. The computations explained below were performed
at 90% of the dissociation energy of the weaker bond
where a rich mixture of chaotic and regular dynamics is
observed [14]. Trajectories in the vicinity of a specific
periodic orbit with elliptic normal stability are studied,
focusing on their escape to the chaotic region, and identi-
fying a generic mechanism of crossover from diffusion
[15] to hyperbolicity and chaos.
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FIG. 1 (color online). The generic behavior of chaotic trajec-
tories in Hamiltonian systems involves substantial fraction of
intermittent behavior. The time-frequency analysis of a typical
OCS trajectory (top panel) allows one to register the transition
region (shaded band) and the frequencies � of the regular
motion, while the time series (lower panel) display the striking
features of this abrupt change. t is time (in units of T0 � 0:063�
10�12 s) and �P1

are the frequency ridges (in units of T�1
0 ) in the

time-frequency decomposition [21] of P1�t�.
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Figure 1 displays the time series of such a trajectory,
initially close to the periodic orbit Oa with period T0 (see
Ref. [14]). Figure 2 shows salient features of capture (left
panel) followed by an abrupt transition to chaos (center
panel). An alternative view of the transition mechanism
appears in Fig. 3 in terms of the Poincaré section �: P� �
0, _P� > 0, � � �. A boundary, marking the crossover
from diffusion to hyperbolicity, can be identified in terms
of an invariant two-dimensional torus (right panel of
Fig. 2). Normal bifurcations of two-dimensional tori turn
out to be the key ingredients in the transition mechanism to
hyperbolicity, as will be shown below. Generically, there
are two stages in the dynamics of the trajectory. During the
trapping stage (duration ttrap), the trajectory is close to
(quasi-)periodic, following the unstable manifold of nor-
mally hyperbolic tori with very small positive Lyapunov
exponent (in our case, � ’ 10�2, thus explaining the ob-
served trapping time ttrap � ��1). During the escape stage
(duration tesc; the shaded band in Fig. 1 and ‘‘tentacles’’ in
Fig. 3), the trajectory follows the unstable manifolds of the
periodic orbit which is in 3:5 resonance with Oa (thick dots
in Fig. 3), with a significantly larger Lyapunov exponent,
leading to a fast transition to the chaotic region of phase
space (center panel of Fig. 2). These two time scales usu-
ally satisfy ttrap � tesc. Observations of repeated trapping-
escape-chaotic processes in relatively short trajectory seg-
ments (�103T0) provide evidence that these effects are
prevalent. According to the dynamical systems theory,
invariant structures with minimal hyperbolicity (in our
case integral surfaces with small positive Lyapunov expo-
nent) determine the main features of transients in chaotic
systems. Normally hyperbolic invariant manifolds [16]
have recently been implicated in the symbolic dynamics
and phase space partition of higher-dimensional chaotic
Hamiltonian systems [17], systems with small-dimensional
saddles such as the ‘‘Crossed Fields’’ [18] and the
Restricted Three Body Problems [19].

Using a combination of trajectory diagnostic tools like
Lyapunov maps [14,20], time-frequency analysis [21], and

methods from the theory of dynamical systems like peri-
odic and quasiperiodic orbit computations [22,23], we
relate the phenomenon of trapping to invariant structures
in phase space and to lower-dimensional invariant tori
(with a relation to their normal stability properties), in
particular. It is commonly assumed that in ‘‘typical’’
Hamiltonian systems with a large number of degrees of
freedom N, the relative measure of N-dimensional invari-
ant tori (N local integrals) in thermodynamic limit is either
zero or one [24]. The implication is that chaotic systems
with large N approach conditions of the stochastic ansatz,
and hence, the trapping phenomenon described above is
insignificant. On the other hand, it has been established
recently that high-order resonances form robust islands of
secondary structures with positive measure [25].

In order to identify bottlenecks of transition from diffu-
sion to chaos, we monitor the progress of invariant phase
space structures along the transition channel using rotation
numbers. The results are summarized in Fig. 4, which is
central to understanding this transition. In a trapping region
around the elliptic periodic orbit Oa (left panel of Fig. 2),
the rotation numbers are obtained from the frequency map
analysis [15] on the surface of section. It can be charac-
terized by a single !trap 	 0:605 56, implying that a two-
dimensional torus is the relevant invariant structure in the
trapping process. Having computed a family of two-
dimensional tori, parametrized by rotation numbers !, it
is evident that !trap places the torus on the hyperbolic
branch of the bifurcation diagram represented in Fig. 4.
This implies that the escape is mediated by manifolds of a
torus with hyperbolic normal stability. The duration of the
trapping stage is approximately 150 returns on �, and is
consistent with the maximal Lyapunov exponent � < 0:05.
Processes associated with the escape from the trapping
region can be better understood by analyzing the tangent
space of the elliptic periodic orbit Oa that locally has the
structure of a direct product (center 
 center) T� I1 �
T� I2, with the periodic orbit at the origin. The elements
of the two intervals Ii � R are rotation numbers !i, which
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FIG. 2 (color online). Projections of the trajectory near a periodic orbit Oa (with period T0), analyzed in Fig. 1. The trajec-
tory is represented in (R1, R2) plots, broken down into segments, corresponding to the trapping stage (left panel) and chaotic stage
(center panel). The bottleneck of transition from diffusion to hyperbolicity can be identified as a two-dimensional invariant torus (right
panel.) The trajectory is sampled at fixed time intervals T0=2. The orbit Oa is shown as a solid curve in the center.
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are not unique in general: The choice is fixed by requiring
lim�!0!i � !0

i , where � is a measure of the ‘‘diameter’’
of the torus and!0

i are stability angles of the periodic orbit
Oa (!0

1 � 0:245 006 33 and !0
2 � 0:370 468 72). The

Poincaré map induces rotations on T, r!1
� 1� r!2

� 1,
where r! is a rotation on T with the rotation number !.
Partial (or complete) resonances are determined by one (or
two) resonance conditions n!1 
m!2 
 k � 0, where
�n;m; k� are integers such that jnj 
 jmj 
 jkj> 0. The
most striking trapping effects are observed for partial
resonances of the type T� I1 � f0g � f0g, and f0g � f0g �
T� I2. Choosing either of the two situations, a resonance
channel has been constructed by finding the two-
dimensional invariant tori for!i 2 Ii. In order to find these
tori we consider the Poincaré map F �: � � �. The
sections of two-dimensional invariant tori are one-
dimensional closed curves (called hereafter ‘‘loops’’). We
consider loops as discretizations of �: T � �(with peri-
odic boundary condition ��s� � ��s
 1�) and require that
the Poincaré map F �, restricted to the loop is equivalent to
a rigid rotation r!. This translates into an invariance con-
dition:

 F ����s�� � ��s
!�: (1)

Tori may have hyperbolic normal linear stability, therefore
a search for them cannot rely on methods exploiting
‘‘stickiness’’ properties. Equation (1) is solved using
damped Newton iterations for the Fourier coefficients of
��s�. The linear stability properties of the loop are deter-
mined by (�,  ), solutions of the generalized eigenvalue
problem:

 DF ��s� �s� � � �s
!�: (2)

Equation (2) has a one-dimensional kernel, which we
eliminate using singular value decomposition. At the peri-
odic orbit, DF � has two pairs of complex eigenvalues
exp�
�!0

i � (i � 1, 2).
The set of two-dimensional tori is found to be discon-

tinuous at the gaps in Fig. 4 due to complete resonances
(periodic orbits) and secondary invariant structures.
Normal stability is typically elliptic for small j!�!0

i j.
We identify the two-dimensional invariant torus at the
period doubling bifurcation point as a bottleneck of a given
resonance channel. The rationale follows from the theory
of dynamical systems: Beyond the bifurcation point at! �
!c, the normal stability changes to hyperbolic. This
change affects trajectories passing by its neighborhood.
One recurrent observation is that the continued fraction
expansion of bifurcation rotation numbers has a tail com-
posed of small integers (see Table I). This feature is
reminiscent of the observation that the continued fraction

TABLE I. Rotation numbers of the two-dimensional invariant
tori at the bifurcation points A, B, C, D shown in Fig. 4.

! Value Cont. frac.

!c
A 0.240 711 317 575 [4, 6, 2, 11, 5, 5. . .]

!c
B 0.215 852 976 389 [4, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1. . .]

!c
C 0.608 654 398 762 [1, 1, 1, 1, 4, 45, 1, 1, 1, 1. . .]

!c
D 0.605 804 087 926 [1, 1, 1, 1, 6, 3, 2, 2, 1. . .]
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FIG. 4 (color online). Fine structure of invariant tori, scanned
along the transition channel. The plot shows how Lyapunov
exponents depend on the rotation number !. The points of
frequency halving bifurcations (A–D) can be interpreted as
bottlenecks of transition from diffusion to hyperbolicity. Red
dots: family of loops arising from the periodic orbit Oa. Black
dots: frequency halved loop, emerging at the bifurcation point A.
Insets display (R1, P1) projections of loops near the bifurcation
point A. Red: loop with elliptic normal stability and ! � !1 	
0:240 67. Black: loop with hyperbolic normal stability and ! �
!2 � �!1 
 1�=2 	 0:620 33.
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FIG. 3 (color online). Poincaré section of the trajectory near a
periodic orbit Oa, analyzed in Figs. 1 and 2. The bottleneck (a
two-dimensional torus) is a loop (blue) at the bifurcation point
(‘‘D’’ in Fig. 4). The trajectory is trapped in the vicinity of a loop
(which is clearly seen from the inset). The escape stage is shown
as two ‘‘tentacles’’, which extend along the unstable manifolds
of a resonant periodic orbit (the five red dots around the center).
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expansion of the frequency of the last invariant torus in
generic Hamiltonian systems with 2 degrees of freedom is
noble (with a tail of ones) in many situations [5].

The signature of sticky regions in mixed systems are
long-time correlations which decay slower than exponen-
tial (usually according to a power law) [3]. The slowing
down of exponential separations due to trapping has been
documented for the collinear model of OCS [26]. For a
quantum-mechanical system close to dissociation (like this
molecule) longer-than-statistical lifetimes mean that the
spectral line widths associated with excitations will be
narrower than expected. Indeed, the photoabsorption line-
widths will be affected, and their narrowing should be
detectable.

In this Letter we identified a single family of phase space
structures which is at the source of the uneven flow of
vibrational energy. We explained a paradoxical situation,
namely, that integral surfaces with positive Lyapunov ex-
ponents (i.e., unstable) can trap chaotic trajectories. These
surfaces are closely connected with local integrals and
partial resonances (and the number of isolating integrals
[27]) in realistic chaotic Hamiltonian systems with many
degrees of freedom. In this sense, these structures found
here differ from the conventional sticky (marginally stable,
or ‘‘elliptic’’) tori. Widespread observations of repeated
trapping-escape-chaotic processes in short trajectory seg-
ments provide evidence that our findings are generic and
occur frequently in many settings ranging from plasmas to
celestial mechanics. For example, the complex mass trans-
port processes by which asteroids reach the inner solar
system proceed in a manner practically identical to the
vibrational energy flow described here: Long quiet periods
with little change are followed by bursts of rapid and
chaotic change, which raise the asteroid’s eccentricity
enough to cross the orbits of terrestrial planets [28]. This
correspondence is seen particularly clearly in the time-
frequency analysis of asteroid motion [29]. Other examples
are afforded by systems with long-range interactions, like
free-electron lasers or atoms in optical cavities. Recent
numerical simulations on a particular model show that
the system remains in quasistationary states (QSS, associ-
ated with regular behavior) for a long time and then
escapes from these QSS to find its way to equilibrium
[10]. The close similarity of the behavior of these systems
and Fig. 1 implies that analysis in terms of phase space
structures will be fruitful in those situations also.
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