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The ground-state energies of 2, 3, 4, and 5 ��’s in a spatial volume V � �2:5 fm�3 are computed with
lattice QCD. By eliminating the leading contribution from three-�� interactions, particular combinations
of these n-�� ground-state energies provide precise extractions of the ���� scattering length in
agreement with that obtained from calculations involving only two ��’s. The three-�� interaction can
be isolated by forming other combinations of the n-�� ground-state energies. We find a result that is
consistent with a repulsive three-�� interaction for m� & 352 MeV.
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A major goal of strong-interaction physics is to deter-
mine the spectrum and interactions of hadrons and nu-
clei from quantum chromodynamics (QCD). Lattice
QCD is the only known way to rigorously compute
strong-interaction quantities, and an increasing effort is
being put into understanding the lattice QCD calculations
that will be required to extract even the most basic prop-
erties of light nuclei. It is clear that at some level, the
interactions among three or more hadrons play a significant
role in nuclei, and an important goal for lattice practi-
tioners is to determine the parameters of these interactions.
We report on the first lattice QCD calculation of systems
comprised of more than two hadrons.

The simplest multihadron systems (both conceptually,
and from a numerical perspective) consist of n pseudo-
scalar mesons of maximal isospin. Interactions among
multiple pions are important to explore for phenomeno-
logical reasons. Two- and three-pion interferometry is
currently being used to determine the coherence of the
pion source in heavy-ion collisions [1]. Further, multipion
interactions impact the formation of a pion condensate
which is energetically favored in systems with large iso-

spin chemical potential and will influence the properties of
(hot) pion gases. In this work we perform lattice QCD
calculations of the ground-state energies of ����,
������, ��������, and ���������� systems
in a spatial volume of V � �2:5 fm�3 with periodic bound-
ary conditions and a lattice spacing of b� 0:125 fm.
These systems provide an ideal laboratory for investigating
multiparticle interactions, as chiral symmetry guarantees
relatively weak interactions among pions, and multiple-
pion correlation functions computed with lattice QCD do
not suffer from signal-to-noise issues that are expected to
plague analogous calculations in multibaryon systems. The
���� scattering length is extracted from the n > 2 pion
systems with precision that is comparable to (and in some
cases better than) the n � 2 determination [2]. Addition-
ally, a result that is consistent with a repulsive three-pion
interaction of magnitude expected from naı̈ve dimensional
analysis (NDA) is found for m� & 352 MeV.

At finite volume, the ground-state energy of a system of
n bosons of mass M is shifted from its infinite-volume
value, nM. In a periodic cubic spatial volume of periodicity
L, this shift is known to be [3–9]

 

�En �
4�a

ML3

n

2

 !�
1�

aI
�L
�

�
a
�L

�
2
�I2 � �2n� 5�J � �

�
a
�L

�
3
�I3 � �2n� 7�IJ � �5n2 � 41n� 63�K�

�

�
n

2

 !
8�2a3

ML6
r�

n

3

 !
��L3
L6
�O�1=L7�; (1)

where a and r are the two-boson scattering length and the
effective range parameter, respectively, and ��L3 is the
renormalization-group invariant (RGI) three-boson inter-
action ( ��L3 is renormalization scheme and scale indepen-
dent, but depends logarithmically on L; in terms of the

three-particle interaction defined in Ref. [8], ��L3 ��3����
64�a4

M �3
���
3
p
�4�� log��L�� 96a4

�2M�2Q�R�). The geometric
constants appearing in Eq. (1) are I � �8:913 632 9, J �
16:532 316, and K � 8:401 924 0. At this order, the en-
ergy is only sensitive to a combination
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of the effective range and scattering length, �a � a� 2�
L3 a3r and in what follows we replace a! �a, eliminating r. The

above expansion is valid provided a, r	 L with an additional constraint on n [8].
Various combinations of the energy differences defined in Eq. (1) are particularly useful in what follows. First
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(for n,m> 2) is independent of ��L3 and allows a determination of �a up to O�1=L4� corrections (combinations achieving the
same result using all of the n � 3, 4, 5 energies can also be constructed). Second, the three-body parameter can be directly
determined from
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(n > 2) with corrections arising at O�1=L�. Additionally,
the dimensionless quantity
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provides a useful check of the convergence of the expan-
sion. Combinations involving �E2;3;5 and �E2;4;5 that van-
ish at this order can also be constructed.

The requisite ground-state energies are extracted from
the n-�� correlation functions defined by

 Cn�t� � h0j
�X

x
����x; t� �����0; 0�

�
n
j0i; (5)

where ����x� � ua�x��5
�da�x� is an interpolating operator

for the �� (a is a color index). The sums in Eq. (5) project
the correlation functions onto the A�1 representation of the
cubic symmetry group (in the continuum this corresponds
to angular momentum ‘ � 0; 4; . . . ). As n increases, the
number of Wick contractions involved in computing Cn�t�
increases as n!2. In the limit of isospin symmetry, the
correlation functions in Eq. (5) with n < 13 require the
computation of only a single quark propagator, S�x; 0� (for
n > 12 additional propagators are required to circumvent
the Pauli exclusion principle). As an example, the n � 3
correlator can be expressed as

 C3�t� � Tr ���3 � 3Tr ���Tr ��2� � 2Tr ��3�; (6)

where � �
P

x�5S�x; t; 0��5S
y�x; t; 0� and the trace is

over Dirac and color indices.
In this work we have computed C1;2;3;4;5�t� in mixed-

action lattice QCD, using domain-wall valence quark
propagators from Gaussian smeared sources on the
rooted-staggered coarse MILC gauge configurations
(203 
 64) after hypercubic smearing and chopping (see
Refs. [2,10] for details). These are computed at pion
masses of m� � 291, 352, 491, 591 MeV. Details of the
propagators used in the correlation functions are given in
Table I and can be found in Ref. [2].

The energies of n pion states are dominated by the n
single-pion energies, with the interactions contributing a

small fraction of the total energy. To extract the resulting
energy shifts, �En, the ratios of correlators

 Gn�t� �
Cn�t�
�C1�t��n

�
t!1

Ae��Ent (7)

are formed, where the second relation holds in the limit of
infinite temporal extent and infinite number of gauge con-
figurations. Inclusion of the effects of temporal boundaries
(here Dirichlet boundary conditions are used) is compli-
cated for multihadron systems, and our analysis is re-
stricted to regions where an effective-mass plot clearly
shows that the ground state is dominant.

For the quantities discussed below, both jackknife and
bootstrap analyses of the correlators and effective masses
(e.g., log�Gn�t�=Gn�t� 1��) are performed for each energy
or combination thereof. These are then used in correlated
and uncorrelated fits to the t dependence to extract the
relevant quantity. Our systematic uncertainties are deter-
mined by comparison of our different analysis procedures
and variation of the fit ranges. To avoid uncertainties
arising from scale setting, we focus on the dimensionless
quantities m� �a���� and m�f4

� ��L3 ( ��L3 is expected to scale
as m�1

� f�4
� by NDA).

The ���� scattering length (more precisely, the com-
bination �a����) has been studied repeatedly in lattice QCD
using the finite-volume formalism of Lüscher [6] [for
a=L	 1 a perturbative expansion gives the n � 2 case
of Eq. (1)]. In particular, a precise extraction of this scat-
tering length has been performed using the same propaga-

TABLE I. Parameters of the domain-wall propagators used
herein. A lattice spacing of b � 0:125 fm has been used to
convert from lattice to physical units. The number of gauge
configurations is Ncfg, and the number of sources per configura-
tion is Nsrc. For further details, see Ref. [2].

m� (MeV) Ncfg Nsrc m�=f�

291.3(1.0)(1.0) 468 16 1.990(11)(14)
351.9(0.5)(0.2) 769 20 2.3230(57)(30)
491.4(0.4)(0.3) 486 24 3.0585(49)(95)
590.5(0.8)(0.2) 564 8 3.4758(98)(60)
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tors as used in this work [2]. Therefore, the utility of
multipion energies in extracting the scattering length can
be ascertained, as summarized in Figs. 1–3.

In Fig. 1, the energy shifts for n � 2, 3, 4, and 5 are
displayed for the highest-precision calculation, m� �
352 MeV. Clear plateaus are visible for each n; indeed,
the relative uncertainty decreases with increasing n in the
range explored (this is particularly clear for the calculation
with m� � 291 MeV). Since multiple combinations of
pions interact in an n-pion state over a larger volume of
the lattice, a statistically improved signal results.

Figure 2 presents extractions of the scattering length at
all four orders in the 1=L expansion in Eq. (1) for m� �
352 MeV. For n > 2, the next-to-next-to-next-to-leading
order (NNNLO) (1=L6) extraction is performed using
Eq. (2) with the point at n � 3 arising from the energy
shifts �E4 and �E5, and so on. Significant dependence on
n is observed in the lower-order extractions (LO, NLO, and
NNLO), indicating the presence of residual finite-volume
effects. However, the most accurate extractions using
Eq. (2), which eliminates the three-�� interaction
[Eq. (1) for n � 2], are in close agreement for all n. This
provides a nontrivial check of the n dependence of Eq. (1),

particularly the presence of a term that scales as �n3�, which
can be identified as the three-pion interaction.

The effective m� �a���� plots for fn;mg � f3; 5g are
shown in Fig. 3. Agreement is found at the level of corre-
lation functions with those of n � 2, fn;mg � f3; 4g, and
fn;mg � f4; 5g. This agreement suggests that higher-order
effects in 1=L [such as higher-derivative interactions and
four-particle interactions, which occur at O�1=L8� and
O�1=L9�, respectively] are small. For the calculations with
m� � 291 MeV, the n > 3 effective m� �a���� plots are
significantly ‘‘cleaner’’ than for n � 2.

To isolate the three-body interaction, we turn now to the
combinations defined in Eq. (3), and the effectivem�f4

� ��L3
plots are shown in Fig. 4. A nonzero value of m�f4

� ��L3 is
found for m� � 291 and 352 MeV. Figure 5 and Table II
summarize the results for the RGI three-�� interaction,
m�f

4
� ��L3 , at L � 2:5 fm. The magnitude of the result is

consistent with NDA. In Table II, we also present
m�f4

��3�� � 1=b�, a quantity that has a well-defined
infinite-volume limit (unlike ��L3 ) but is scale and scheme
dependent. Its scale dependence is given below Eq. (1), and
we use the minimal subtraction scheme [8].
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FIG. 3 (color online). Effective m� �a���� plot for fn;mg �
f3; 5g using Eq. (2). The statistical and systematic uncertainties
of the fits have been combined in quadrature.
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at O�1=L3; 1=L4; 1=L5� from Eq. (1), respectively. The NNNLO
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Finally, Eq. (4) and its counterparts involving other
combinations of energies allow for a determination of
residual 1=L7 contributions to the quantities we have ex-
tracted at NNNLO. They are all consistent with zero and
are &0:05.

Further lattice QCD calculations are required before a
definitive statement about the physical value of the three-
pion interaction, m�f4

� ��L3 , can be made. While at lighter
pion masses, there is evidence for a contribution to the
various n-pion energies beyond two body scattering that
scales as the three-body contribution in Eq. (1), a number
of systematic effects must be further investigated. The
extraction of this quantity has corrections that are formally
suppressed by �a=L; however, the coefficient of the higher-
order term(s) may be large, and the next order term in the
volume expansion needs to be computed (for n � 3, this
result is known [9] ). It is also possible that the signals seen
in Fig. 4 are artifacts of the lattice discretization, but the
observed scaling that is consistent with �n3� suggests this is
not the case. However, calculations at finer lattice spacings
and with different lattice discretizations are required to
resolve this issue.

As the lattice QCD study of nuclei is an underlying
motivation for this work, it is worth considering difficulties
that will be encountered in generalizing the result de-
scribed here to baryonic systems. Certain difficulties
have been discussed in Ref. [8]. Here we focus on the
numerical issues. The ratio of signal to noise scales very
poorly for baryonic observables [11], requiring an expo-
nentially large number of configurations to extract a pre-
cise result. Also, the factorial growth of the combinatoric
factors involved in forming the correlators for large sys-
tems of bosons and fermions and the high powers to which

propagators are raised (e.g., for the 12-�� correlator, there
is a term 435 456 00 Tr ��11�Tr ���) implies that the
propagators used to form the correlation functions must
be known to increasingly high precision. There is much
room for theoretical advances in this area.

In this work we have numerically studied the ground-
state energies of n � 2, 3, 4, 5��’s in a cubic volume with
periodic boundary conditions using lattice QCD. We find
that the ���� scattering length can be extracted from
combinations of these energies that eliminate the
three-�� interaction, and we agree with previous n � 2
calculations [2]. In some cases the precision of the extrac-
tion is improved. We have found evidence of a repulsive
three-�� interaction for m� & 352 MeV. Future calcula-
tions will extend these results to larger n and to systems
involving multiple kaons and pions. Further, calculations
must be performed in different spatial volumes to deter-
mine the leading correction [O�1=L�] to the three-��

interaction, and at different lattice spacings in order to
eliminate finite-lattice spacing effects.
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Note added in proof.—The 1=L7 contributions to Eq. (1)
have been computed recently [13].
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[6] M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
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TABLE II. The ������ interaction as defined in Eq. (3).
The most precise result (using n � 5) is quoted.

m� (MeV) 291 352 491 591

m�f
4
� ��L�2:5 fm

3 1.3(2)(7) 0.8(1)(2) 0.4(2)(4) �0:4�3��4�
m�f

4
��3�� � 1=b� 1.2(2)(7) 0.7(1)(2) �0:1�2��4� �1:3�3��4�
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FIG. 5 (color online). Mass dependence of the RGI three-��

interaction m�f
4
� ��L3 . The statistical and systematic uncertainties

have been combined in quadrature. The vertical dashed line
denotes the physical value of m��=f�� .
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