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We discuss a new superfluid instability occurring in the interior of mature neutron stars with
implications for free precession. This instability is similar to the instability which is responsible for
the formation of turbulence in superfluid helium. We demonstrate that the instability is unlikely to affect
slowly precessing systems with weak superfluid coupling. In contrast, fast precession in systems with
strong coupling appears to be generically unstable. This raises serious questions about our understanding
of neutron star precession and complicates attempts to constrain neutron star interiors using such

observations.
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Introduction.—Neutron stars tend to be extremely stable
rotators, with stability that sometimes rivals that of the best
atomic clocks. Yet a growing sample of pulsars exhibits
spin irregularities, like glitches and timing noise. They may
also be undergoing free precession. From the theory point
of view, one might expect precession to be generic.
Nevertheless, for reasons still to be understood, compelling
evidence for long-period precession has been found only in
the timing data of a few pulsars. The best candidate is PSR
B1828-11 [1] which exhibits a ~500 d high-quality peri-
odicity, with an amplitude of a few degrees. The paucity of
precessing neutron stars is one of the mysteries of pulsar
physics. To explain why precession is so rare is difficult. A
modestly realistic neutron star model requires the fusion of
much of modern theoretical physics, since it should ac-
count for strong gravity, supranuclear density matter,
superfluidity or superconductivity and potentially very
strong magnetic fields.

In the standard picture of a mature neutron star the bulk
of the neutrons are superfluid and rotate by forming a dense
array of vortices. Meanwhile the outer core protons, which
are expected to form a type II superconductor, are electro-
magnetically coupled to the normal electrons or muons.
This leads to a model with two distinct fluid components
(loosely referred to as neutrons and ‘“‘protons” in the
following). Their coupling is usually assumed to have the
same form as in the case of superfluid helium, see [2-5].
However, this model is based on the assumption that the
neutron vortex array is (locally) straight. This may not be
the case. In a body that undergoes a more complex motion
one might expect to find that the vortices get tangled up to
form a state of superfluid turbulence. In helium, the for-
mation of a vortex tangle is assumed to follow the onset of
an instability in the vortex array [6]. It has recently been
suggested that an analogue of this so-called Donnelly-
Glaberson instability may be relevant for neutron stars
[7-9]. If this is the case, one would expect it to have
interesting repercussions for neutron star precession. In
this Letter we confirm this expectation by demonstrating

0031-9007/08/100(8)/081101(4)

081101-1

PACS numbers: 97.60.Jd, 95.30.Lz, 97.10.Kc

that short-wavelength instabilities are generic in fast pre-
cessing superfluid neutron stars.

Plane-wave analysis.—Our main objective is to inves-
tigate whether analogues of the Donnelly-Glaberson insta-
bility are likely to occur in a neutron star interior. The
smooth-averaged hydrodynamics of the system is gov-
erned by two coupled Euler-type equations (one for the
neutrons and one for the protons, variables associated with
each fluid will be labeled by x = {n, p}), see [5] for more
details. In a frame rotating with angular velocity (' we
have

DI} + Vighy = 2€,00 08 + f1, (1)

Div} + Vi, = 2€iij1€Qk — [ xy + vV (2)

Here the fluid velocities are denoted by vi, we have
introduced the convective derivatives D} = 9, + v{(Vj
and x, = p,/p, is the density fraction. The scalars
are the sums of specific chemical potentials and the gravi-
tational potential [5]. For simplicity, we assume that both
fluids are incompressible; i.e., we have V,-v,'( = 0. In the
interest of clarity, we ignore the entrainment effect and
vortex tension in this study. (In fact, it is clear from the
results in [9] that the latter is only important for extremely
short-wavelength oscillations.) A key property of the sys-
tem is that neutrons and protons are coupled via mutual
friction, a force f™ mediating the interaction between the
quantized neutron vortices and the proton fluid or magnetic
flux tubes. The standard expression for this force is [2—5]

o= 3€ijk€km16?)jﬂwrth?p + Blfz‘jkwﬂwﬁp, 3)
where wj,, = vi, — v}, and the neutron vorticity is given by
w) =201 + €*V,;v}. A “hat” denotes a unit vector. This
form for the mutual friction force results from balanc-
ing the Magnus force that acts on the neutron vortices

and a resistive ““drag” force which represents the inter-
action between the vortices and the charged fluid [5].
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Representing the drag force by a dimensionless coefficient
R, one finds that

RZ
B_1+:RZ 1+ R

In the most commonly considered case, the mutual
friction arises from scattering of electrons off the vortex’s
intrinsic magnetic field. This leads to a relatively weak
coupling [5,10], with R =~ 4 X 10*. This means that we
have B =~ R <« 1 and B’ = B2. 1t is, however, not estab-
lished that it is this limit that applies. Hence, one must also
consider the case of strong coupling that follows from
taking R >> 1. This translates into B < 1 and B’ = 1 —
B2. The strong coupling limit is relevant if the interaction
between neutron vortices and fluxtubes is efficient [11-13],
if there is a fluxtube cluster associated with each neutron
vortex [14], or if there is significant vortex pinning [15] (in
the limit R — oo the vortices can be considered as per-
fectly “pinned”).

Returning to the Euler equations (1) and (2), only the
proton equation contains a shear viscosity term. This is
because the dominant process is expected to be electron-
electron scattering. The upshot of this is that the neutron
fluid is not directly affected by shear viscosity. For a
uniform density star with M = 1.4My, R = 10 km and
X, = 0.1 (our canonical values) we have v, =
107(T /108 K)~2 cm?/s, see [16,17].

We consider perturbations of Egs. (1) and (2) for a
background configuration where both fluids rotate rigidly
with vl = €7%(Q} — Q)x,. By allowing for an arbitrary
orientation of the angular velocity vectors, this configura-
tion can represent the standard free precession modes of a
two-fluid star [18,19]. We then linearize the Euler equa-
tions, focusing on short-wavelength motion by making the
standard plane-wave decomposition

and B = “4)

Svi = Aleittha’) Al = const, )
and similarly for all other variables. Since we expect the
flow along the background vortex array to play a central
role [8,9], we carry out the perturbation calculation in the
neutron frame. That is, we take Q! = Q! = QO 4. To
simplify the problem, without any real loss of generality
[9], we consider only waves propagating along the vortices,
i.e., k' = kyi'. Then the fact that we have assumed the
fluids to be incompressible means that the waves are
transverse, A1;AL = 0. After some algebra (cf. [9] for a
similar analysis), the perturbed versions of (1) and (2)
lead to a 4 X 4 system, the determinant of which provides
the dispersion relation for short-wavelength waves. A de-
tailed analysis will be provided elsewhere. Here we focus
on the modes that may become unstable.

Let us first consider the weak drag limit. Then we find a
mode with frequency (with viscous corrections of order

1/ky)
o=2Q,+ (iB — B’)(an - k”W”). (6)

Here w) represents the relative linear flow along the (back-
ground) neutron vortex array. In our case we have w) =
—i'e; ij{;xk, and we have taken w)| to be constant. Hence,
our analysis is only consistent for short-wavelength mo-

tion. From (6) we see that the system is unstable (Imo < 0)
if

W > ZQn/k”. (7)

As discussed in [9], the solution (6) represents inertial
waves in the neutron fluid. This instability belongs to the
general class of two-stream instabilities, and is the exact
analogue of the Donnelly-Glaberson instability in helium
[6]. Hence, its existence should come as no real surprise.
As in helium, one would expect the onset of the instability
to lead to the formation of tangled vortices, reconnection,
and superfluid turbulence. Since turbulence alters the form
of the macroscopic mutual friction force [7,8], it is not yet
clear how the system will evolve once the unstable waves
grow to large amplitude.

As far as we are aware, the strong drag problem has not
been considered previously. Interestingly, there are un-
stable modes also in this case. The nature of the instability
is, however, more complex. Taking B = 0 and B’ = 1, we
find a mode with frequency

2 2

P

veekj {Q%(l +x,)?
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1
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This result clearly shows that there will be unstable waves
(representing coupled inertial waves in the neutron and
proton fluids). In the inviscid (v, = 0) limit the instability
is active provided that

Q.1+ xp)2

>
" 2kyxp

(€))

As in the weak drag case, one would expect the onset of
this instability to lead to tangled vortices.

Implications for precessing neutron stars.—To discuss
the implications of the above results we need to make
contact between our background configuration and the
global precession motion. Fortunately, this is straightfor-
ward. The precession of a two-component neutron star
model, including mutual friction coupling, has already
been discussed in [18]. The simplest model consists of
two components that rotate rigidly. The neutron compo-
nent is assumed spherical with moment of inertia /. At the
same time, the protons (including the crust) are assumed to
be slightly deformed in such a way that I, =1} =1, =
I;/(1 + €) with € < 1 (in a principal coordinate system
where the deformation axis is along %3). When perturbed
away from alignment of the two rotation axes (), the crust
precesses with a certain frequency and observable wobble
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angle 6,, (the angle between the deformation axis X3 and
the total angular momentum axis) [19].

The plane-wave analysis is consistent for the precessing
system provided that the two rotation vectors ()% can be
considered fixed. This is true as long as the precession
period Py, is significantly longer than the time scale asso-
ciated with the local waves. As already mentioned, the
wavelength of the waves we consider must also be short
enough that w) can be treated as a constant. If these
conditions hold then we are simply considering local per-
turbations of a given precession model. To check whether
this system is locally stable we only need to work out w)
from the precession solution. If an instability is present,
then the precession solution must be considered question-
able. It certainly cannot be the case that the two compo-
nents rotate rigidly, a key assumption in the standard
analysis [18].

Weak drag slow precession.—In the weak drag limit,
there exists a long-period precession solution that is slowly
damped by mutual friction. We have [18§]

1
Py~P/e and 1;~ ﬁ pr (10)
where P, is the precession period, 7, is the damping time,
and P is the rotation period of the star. We then find that

w) = 2meb,,x,/P, (11)

where x,(<R) is one of the coordinates associated with
the crust system. This estimate can be used in (7) to show
that all waves with wavelength (A = 277/k|) shorter than

(0, € R
Amax =5X10 4<1°>(W><m> cm (12)

are unstable. However, there is a short-wavelength cutoff
for the instability. Our analysis obviously becomes invalid
once the wavelength is so short that the fluid description is
no longer relevant. It is natural to assume that this cutoff
corresponds to a wavelength

P\1/2
)\min =~ lOOdn =~ (1—> cm (13)
s
where d,, is the intervortex spacing. Since we need to have
Amax = Amin 10 order to argue that the instability is relevant,
we see that we must have

0, P\1/2/ € \-1 R -1
<1°>>1900<Ts> (10—8> (106 cm> -9

What does this result tell us? It suggests that, if the drag is
weak, the superfluid instability is unlikely to play a role in
slowly spinning systems. For the archetypal precessor PSR
B1828-11 [1] the spin period is 0.4 s and in order to have
precession with the observed period one would need € =
1078 It is then clear from (14) that precession with a
wobble angle of a few degrees is safely in the stable
regime. Nevertheless, the weak drag result is not without
interest. Consider, for example, a millisecond pulsar with a

maximally strained crust. From (14) we see that if the spin
period is 1 ms, then precession with 6, larger than a degree
would be unstable provided that € > 6 X 1077, Since the
theoretically predicted range for crustal deformations has
€ < 1073 [20], we see that our result puts a constraint on
slow precession in very fast spinning neutron stars.

Strong drag fast precession.—In the strong drag limit,
the relevant precession solution is such that [18]

1 P I
P zllp and t;~-— " (15)

and we find that

2 I
w2 Iy (16)

P,

wi =

The (inviscid) instability criterion (9) then implies that
waves with wavelength shorter than

6 R
Ay = 2 X 105<1:f><106 Cm) cm (17)

(we have assumed 1, /1, = xp) will be unstable.

However, as is clear from (8), the unstable strong drag
modes are affected by viscosity. To unveil the detailed
behavior we have solved the dispersion relation numeri-
cally for a range of parameter values. Typical results are
shown in Fig. 1. This figure shows the growth time scale for
the instability, 7,,y, as a function of the wavelength A and
illustrates how the importance of shear viscosity varies
with temperature. The results for core temperatures 7' =
10° K and 107 K show a clear transition from a regime
where the inviscid approximation to (8) is valid (above
A=20cm and 10*cm, respectively) to a short-
wavelength regime where viscosity alters the result.
However, a surprising feature appears as one proceeds
towards shorter wavelengths for a fixed temperature. As
k|| becomes large, it turns out that there is a cancellation of
the leading order viscosity terms, cf. (8). For short wave-
lengths, the mode frequencies are instead accurately (with
errors of order 1/kj) described by (6) with B’ = 1. Hence,
for A < A, the short-wavelength modes grow on a time
scale given by

A

27 Blwy | (18)

Tarow ~

For typical parameters, we have

e N N

For consistency the unstable waves need to grow on a time
scale that is short compared to the precession period. If we
require (8ay) Tgrow < 0.1P, then we have

pr»

R\N\-1/0,,
A< 70<W> <1°> cm. (20)

The corresponding instability region is indicated by a I in
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FIG. 1 (color online). Growth time scales 7y (A) for unstable
superfluid waves in a precessing neutron star. This particular
model has R = 10°, representing the strong drag regime, P =
1s and 6, = 1°. The dotted horizontal line shows the fast
precession period Py, that follows if we take x, = I,/I, = 0.1.
We compare our numerical results for three different core
temperatures (solid lines) to two approximations. The short-
wavelength approximation and the R >> 1 approximation (8)
are both indicated by dashed lines. The region where a short-
wavelength instability operates (I) for 7 = 107 K is highlighted.
Finally, the A < A_;, region where we assume that the hydro-
dynamical description fails is shaded.

Fig. 1. Moreover, in order to have A > A_;, (noting that the
short-wavelength cutoff remains as in the weak drag case)
we must have

-1/2
R <7 X 10‘(?3)(%) ? 1)

This shows that the short-wavelength instability constrains
a wide range of fast precession models. From the results in
Fig. 1 it is also clear that there may exist a medium
wavelength instability [well approximated by (8)]. As we
will discuss in detail elsewhere, this instability regime is
relevant for temperatures above 107 K or so, and will
dominate for young neutron stars with very large R.
Brief discussion.—In this Letter we have demonstrated
that short-wavelength superfluid instabilities may operate
in freely precessing neutron stars. In the weak drag regime,
the instability affects only rapidly spinning stars that have
significantly deformed crusts. PSR B1828-11, the best
candidate precessor, lies well within the stable regime. In
contrast, our results have serious implications for systems
in the strong drag regime. We predict that these systems
will suffer local instabilities, possibly leading to the for-
mation of superfluid turbulence, for a wide range of the
relevant parameter space. This calls into question the stan-
dard precession model, which is based on two coexisting
fluids rotating as solid bodies [18], and any conclusions
drawn from it. In particular, one would note Link’s argu-

ment [12,13] that the coupling between vortices and flux-
tubes ought to lead to fast precession according to (15).
Since this is contradicted by the observed slow precession
of PSR B1828-11, Link suggests that our understanding of
the neutron star core physics is wrong and that the protons
would actually form a type I superconductor (without
fluxtubes). Our results add an element of doubt. We have
essentially shown that the strong drag fast precession so-
lution may be inconsistent for a neutron star spinning at the
rate of PSR B1828-11. If the precessing motion triggers a
range of unstable short-wavelength waves then the original
solid-body assumption that led to (15), cf. [18], cannot
hold. The precession problem may thus be more complex
than usually assumed, and a consistent description of fast
precession must properly include superfluid wave dynam-
ics and potential turbulence.
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