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A new thermodynamic inequality is derived which leads to the maximum work that can be extracted
from multi-heat-baths with the assistance of discrete quantum feedback control. The maximum work is
determined by the free-energy difference and a generalized mutual information content between the
thermodynamic system and the feedback controller. This maximum work can exceed that in conventional
thermodynamics and, in the case of a heat cycle with two heat baths, the heat efficiency can be greater than
that of the Carnot cycle. The consistency of our results with the second law of thermodynamics is ensured
by the fact that work is needed for information processing of the feedback controller.
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Among a large number of studies conducted on the
relationship between thermodynamics and information
processing [1–15], particularly provoking is the work of
Szilard [2] who argued that positive work Wext can be
extracted from an isothermal cycle if Maxwell’s demon
plays the role of a feedback controller [7]. It is now well
understood that the role of the demon does not contradict
the second law of thermodynamics, because the initializa-
tion of the demon’s memory entails heat dissipation [3–5].
We note that, in the case of an isothermal process, the
second law of thermodynamics can be expressed as

 Wext � ��FS; (1)

where �FS is the difference in the Helmholtz free energy
between the initial and final thermodynamic equilibrium
states.

In a different context, quantum feedback control has
attracted considerable attention for controlling and stabi-
lizing a quantum system [16–22]. It can be applied, for
example, to squeezing an electromagnetic field [18], spin
squeezing [20], and stabilizing macroscopic coherence
[22]. While the theoretical framework of quantum feed-
back control as a stochastic dynamic system is well devel-
oped, the possible thermodynamic gain of quantum
feedback control has yet to be fully understood.

In this Letter, we derive a new thermodynamic inequal-
ity which sets the fundamental limit on the work that can be
extracted from multi-heat-baths with discrete quantum
feedback control [7,23], consisting of quantum measure-
ment [23,24] and a mechanical operation depending on the
measurement outcome. The maximum work is character-
ized by a generalized mutual information content between
the thermodynamic system and the feedback controller. We
shall refer to this as the QC-mutual information content,
where QC indicates that the measured system is quantal
and that the measurement outcome is classical. The QC-
mutual information content reduces to the classical mutual
information content [25] in the case of classical measure-
ment. In the absence of feedback control, the new inequal-

ity (17) reduces to the Clausius inequality. In the case of an
isothermal process, its upper bound exceeds that of in-
equality (1) by an amount proportional to the QC-mutual
information content.

We consider a thermodynamic process for system S
which can contact heat baths B1; B2; . . . ; Bn at respective
temperatures T1; T2; . . . ; Tn. We assume that system S is in
thermodynamic equilibrium in the initial and final states.
For simplicity, we also assume that the initial and final
temperature of S is given by T � �kB���1. This can be
realized by contacting S with, for example, B1 in the
preparation of the initial state and during equilibration to
the final state; in this case T � T1. We do not, however,
assume that the system is in thermodynamic equilibrium
between the initial and final states.

We assume that system S and heat baths Bm are as a
whole isolated and that they only come into contact with
some external mechanical systems and the feedback con-
troller. Apart from the feedback controller, the total
Hamiltonian can be written as

 Ĥ�t� � ĤS�t� �
Xn
m�1

�ĤSBm�t� � ĤBm	; (2)

where ĤSBm�t� is the interaction Hamiltonian between
system S and heat bath Bm. The Hamiltonian ĤS�t� de-
scribes a mechanical operation on S through such external
parameters as an applied magnetic field or volume of the
gas, and the Hamiltonian ĤSBm�t� describes, for example,
the attachment (detachment) of an adiabatic wall or Bm to
(from) S. We consider a time evolution from ti to tf,
assume ĤSBm�ti� � ĤSBm�tf� � 0 for all m, and write
ĤS�ti� � ĤS

i and ĤS�tf� � ĤS
f. The time evolution of the

total system with discrete quantum feedback control can be
divided into the following five stages:

Stage 1 (Initial state).—At time ti, the initial state of S
and that of Bm are in thermodynamic equilibrium at tem-
peratures T and Tm, respectively. We assume that the
density operator of the entire state is given by the canonical
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distribution

 �̂ i �
exp���ĤS

i �

ZSi



exp���1Ĥ
B1�

ZB1

 � � �



exp���nĤ

Bn�

ZBn
; (3)

where �m � �kBTm��1 (m � 1; 2; . . . ; n), ZSi �
Tr fexp���ĤS

i �g, and ZBm � Tr fexp���mĤ
Bm�g. We de-

note the Helmholtz free energy of system S as FSi �
�kBT lnZSi .

Stage 2 (Unitary evolution).—From ti to t1, the
entire system undergoes unitary evolution Ûi �

T exp�
Rt1
ti Ĥ�t�dt=i@	.

Stage 3 (Measurement).—From t1 to t2, the feedback
controller performs quantum measurement on S described
by measurement operators fM̂kg and obtains each outcome
kwith probability pk. Let X be the set of outcomes k’s, and
fD̂kg be positive operator-valued measure (POVM) as de-
fined by D̂k � M̂yk M̂k; we then have pk � Tr �D̂k�̂�. We
denote the premeasurement density operator of the entire
system as �̂1, the post-measurement density operator with
outcome k as �̂�k�2 � M̂k�̂M̂

y
k =pk, and define �̂2 �P

kpk�̂
�k�
2 . Note that our scheme can be applied not only

to a quantum measurement, but also to a classical mea-
surement which can be described by setting ��̂1; D̂k	 � 0
for all k.

Stage 4 (Feedback control).—From t2 to t3, the feedback
controller performs a mechanical operation on S depending
on outcome k. Let Ûk be the corresponding unitary opera-
tor on the entire system, and �̂�k�3 � Ûk�̂

�k�
2 Û

y
k be the

density operator of the entire system at t3 corresponding
to outcome k. We define �̂3 �

P
kpk�̂

�k�
3 . Note that the

feedback control is characterized by fM̂kg and fÛkg.
Stage 5 (Equilibration and final state).—From t3 to tf,

the entire system evolves according to unitary operator Ûf

which is independent of outcome k. We assume that by tf
system S and heat bath Bm will have reached thermody-
namic equilibrium at temperatures T and Tm, respectively.
We denote as �̂f the density operator of the final state of
the entire system, which is related to the initial state as

 �̂ f � E��̂i� �
X
k

ÛfÛkM̂kÛi�̂iÛ
y
i M̂

y
k Û
y
k Û
y
f : (4)

We emphasize that �̂f need not equal the rigorous canoni-
cal distribution �̂can

f , as given by

 �̂ can
f �

exp���ĤS
f�

ZSf



exp���1Ĥ
B1�

ZB1

 � � �



exp���nĤ

Bn�

ZBn
; (5)

where ZSf � Tr fexp���ĤS
f�g. We only assume that the

final state is in thermodynamic equilibrium from a macro-
scopic point of view [13].

We will proceed to our main analysis. The difference in
the von Neumann entropy between the initial and final
states can be bounded from the foregoing analysis as
follows:
 

S��̂i��S��̂f��S��̂1��S��̂3��S��̂1��
X
k

pkS��̂
�k�
3 �

�S��̂1��
X
k

pkS��̂
�k�
2 �

�S��̂1��
X
k

Tr

 ������
D̂k

q
�1

������
D̂k

q
ln

������
D̂k

q
�̂1

������
D̂k

q
pk

!

�S��̂1��H�fpkg��
X
k

Tr�
������
D̂k

q
�1

������
D̂k

q

� ln
������
D̂k

q
�1

������
D̂k

q
�; (6)

where S��̂� � �Tr ��̂ ln�̂� is the von Neumann entropy
and H�fpkg� � �

P
k2Xpk lnpk is the Shannon informa-

tion content. Note that in deriving the inequality (6),
we used the convexity of the von Neumann entropy,
i.e., S�

P
kpk�̂

�k�
3 � 

P
kpkS��̂

�k�
3 �. Defining notations

~H��̂1; X� � �
P
kTr �

������
D̂k

q
�̂1

������
D̂k

q
ln

������
D̂k

q
�̂1

������
D̂k

q
� and

 I��̂1:X� � S��̂1� �H�fpkg� � ~H��̂1; X�; (7)

we obtain

 S��̂i� � S��̂f� � I��̂1:X�: (8)

We refer to I��̂1:X� as the QC-mutual information con-
tent which describes the information about the measured
system that has been obtained by measurement. As shown
later, I��̂1:X� satisfies

 0 � I��̂1:X� � H�fpkg�: (9)

We note that I��̂1:X� � 0 holds for all state �̂1 if and only
if D̂k is proportional to the identity operator for all k, which
means that we cannot obtain any information about the
system by this measurement. On the other hand, I��̂1:X� �
H�fpkg� holds if and only if D̂k is the projection operator
satisfying ��̂1; D̂k	 � 0 for all k, which means that the
measurement on state �̂1 is classical and error-free. In
the case of classical measurement (i.e., ��̂1; D̂k	 � 0 for
all k), I��̂1:X� reduces to the classical mutual information
content. In fact, we can write I��̂1:X� in this case as
I��̂1:X� � �

P
iqi lnqi �

P
k;iqip�kji� lnp�kji�, where

�̂1 �
P
iqij iih ij is the spectrum decomposition of the

measured state, and p�kji� � h ijD̂kj ii can be interpreted
as the conditional probability of obtaining outcome k under
the condition that the measured state is j ii.
I��̂1:X� can be written as I��̂1:X� � ��f�̂�k�2 g� � �Smeas,

where ��f�̂�k�2 g� � S��̂2� �
P
k2XpkS��̂

�k�
2 � is the Holevo �
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quantity which sets the Holevo bound [23,26], and
�Smeas � S��̂2� � S��̂1� is the difference in the von
Neumann entropy between the premeasurement and post-
measurement states. If �Smeas � 0 holds, that is, if the
measurement process does not disturb the measured sys-
tem, then I��̂1:X� reduces to the Holevo � quantity; in this
case, the upper bound of the entropy reduction with dis-
crete quantum feedback control is given by the distinguish-
ability of post-measurement states f�̂�k�2 g.

Nielsen et al. have derived inequality S��̂i� � S��̂f� �
S��̂i; E� [7,23], where S��̂i; E� is the entropy exchange
which depends on entire process E, including the feedback
process. In contrast, our inequality (13) is bounded by
I��̂1:X� which does not depend on the feedback process,
but only depends on premeasurement state �̂1 and POVM
fD̂kg, namely, on the information gain by the measurement
alone.

It follows from inequality (8) and Klein’s inequality [27]
that

 S��̂i� � �Tr ��̂f ln�̂can
f � � kBI��̂1:X�: (10)

Substituting Eqs. (3) and (5) into inequality (10), we have

 �ESi �E
S
f��

Xn
m�1

T
Tm
�EBmi �E

Bm
f ��F

S
i �F

S
f�kBTI��̂1:X�;

(11)

where ESi � Tr �ĤS
i �̂i�, ESf � Tr �ĤS

f�f�, EBmi �

Tr �ĤBm�̂i�, and EBmf � Tr �ĤBm�̂f�. Defining the differ-
ence in the internal energy between the initial and final
states of system S as �US � ESf � E

S
i , the heat exchange

between system S and heat bath Bm as Qm � EBmi � E
Bm
f ,

and the difference in the Helmholtz free energy of system S
as �FS � FSf � F

S
i , we obtain

 � �US �
Xn
m�1

T
Tm

Qm � ��FS � kBTI��̂1:X�: (12)

This is the main result of this Letter. Inequality (12)
represents the second law of thermodynamics in the pres-
ence of a discrete quantum feedback control, where the
effect of the feedback control is described by the last term.
For a thermodynamic heat cycle in which I��̂1:X� � 0,
�US � 0, and �FS � 0 hold, inequality (12) reduces to
the Clausius inequality

 

Xn
m�1

Qm

Tm
� 0: (13)

The equality in (12) holds if and only if �̂�k�3 is independent
of measurement outcome k (i.e., the feedback control is
perfect), and �̂f coincides with �̂can

f .
We will discuss two important cases for inequality. Let

us first consider a situation in which the system undergoes
an isothermal process in contact with single heat bath B at
temperature T. In this case, (12) reduces to

 Wext � ��FS � kBTI��̂1:X�; (14)

where the first law of thermodynamics, Wext �Pn
m�1 Qm ��US, is used. Inequality (14) implies that

we can extract work greater than ��FS from a single
heat bath with feedback control, but that we cannot extract
work larger than ��FS � kBTI��̂1:X�. If we do not get
any information, (14) reduces to (1). On the other hand, in
the case of classical and error-free measurement, (14)
becomes Wext � ��FS � kBTH�fpkg�.

The upper bound of inequality (14) can be achieved with
the Szilard engine [2] which is described as follows. A
molecule is initially in thermal equilibrium in a box in
contact with a heat bath at temperature T. We quasistati-
cally partition the box into two smaller boxes of equal
volume and perform a measurement on the system to find
out in which box the molecule is. When the molecule is
found in the right one, we remove the left one and move the
right one to the left position, which is the feedback control.
We then expand the box quasistatically and isothermally so
that the final state of the entire system returns to the initial
state from a macroscopic point of view. During the entire
process, we obtain ln2 of information and extract kBT ln2
of work from the system.

We next consider a heat cycle which contacts two heat
baths: BH at temperature TH and BL at TL with TH > TL.
We assume that ĤS

i � ĤS
f, �US � 0, and �FS � 0.

Noting that Wext � QH �QL, we can obtain

 Wext �

�
1�

TL
TH

�
QH � kBTLI��̂1:X�: (15)

Without a feedback control, (15) shows that the upper
bound for the efficiency of heat cycles is given by that of
the Carnot cycle: Wext=QH � 1� TL=TH. With feedback
control, (15) implies that the upper bound for the efficiency
of heat cycles becomes larger than that of the Carnot cycle.
The upper bound of (15) can be achieved by performing a
Szilard-type operation during the isothermal process of the
one-molecule Carnot cycle; if we perform the measure-
ment and feedback with ln2 of information in the same
scheme as the Szilard engine during the isothermal process
at temperature TH, the work that can be extracted is given
by Wext � �1� TL=TH��QH � kBTH ln2� � kBTH ln2 �
�1� TL=TH�QH � kBTL ln2. Note that we can reach the
same bound by performing the Szilard-type operation dur-
ing the isothermal process at temperature TL.

We now prove inequality (9). For simplicity of notation,
we consider a quantum system denoted as Q in general,
instead of S and Bm’s. The measured state of system Q is
written as �̂, and POVM as fD̂kgk2X. We introduce auxil-
iary system R which is spanned by orthonormal
basis fj�kigk2X, and define two states �̂1 and �̂2 of Q�
R as �̂1�

P
k
����̂
�
p

D̂k
����̂
�
p

j�kih�kj and �̂2�P

k

������
D̂k

q
�̂

������
D̂k

q

j�kih�kj. It can be shown that
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Tr �
����̂
�
p

D̂k
����̂
�
p
� � Tr �

������
D̂k

q
�̂

������
D̂k

q
� � pk, TrR��̂1� � �̂, and

TrQ��̂1� �
P
kpkj�kih�kj � �̂R. Defining �̂�k�1 �����̂

�
p

D̂k
����̂
�
p

=pk, �̂�k�2 �
������
D̂k

q
�̂

������
D̂k

q
=pk, and �̂0 �P

kpk�̂
�k�
2 , we have

 S��̂2� �
X
k

pkS�
������
D̂k

q
�̂

������
D̂k

q

j�kih�kj=pk� �H�fpkg�

�
X
k

pkS��̂
�k�
2 � �H�fpkg� � ~H��̂; X�:

(16)

Since S�L̂yL̂� � S�L̂L̂y� holds for any linear operator L̂,
we have S��̂2��

P
kpkS��̂

�k�
2 ��H�fpkg��

P
kpkS��̂

�k�
1 ��

H�fpkg��S��̂1�. Therefore,

 

~H��̂; X� � S��̂1� � S��̂� � S��̂R� � S��̂� �H�fpkg�;

(17)

which implies I��̂:X�  0. The equality in (17) holds for
all �̂ if and only if �̂1 can be written as tensor product �̂ 

�̂R for all �̂: that is, D̂k is proportional to the identity
operator for all k. We will next show that I��̂:X� �
H�fpkg�. We make spectral decompositions as �̂ �P
iqij iih ij and �̂0 �

P
jrjj 

0
jih 

0
jj, where rj �

P
iqidij,

and define dij �
P
kjh ij

������
D̂k

q
j 0jij

2, where
P
idij � 1 for

all j and
P
jdij � 1 for all i. It follows from the convexity

of �x lnx that S��̂� � �
P
iqi lnqi � �

P
jrj lnrj � S��̂0�.

Therefore,
 

H�fpkg� � I��̂:X� � ~H��̂; X� � S��̂�

� H�fpkg�

�
X
k

pkS��̂
�k�
2 � � S��̂�

 H�fpkg� �
X
k

pkS��̂
�k�
2 � � S��̂

0�

 0: (18)

It can be shown that the left-hand side is equal to zero for
all �̂ if and only if D̂k is a projection operator satisfying
��̂; D̂k	 � 0 for all k.

Our results do not contradict the second law of thermo-
dynamics, because there exists an energy cost for informa-
tion processing of the feedback controller [3–5]. Our
results are independent of the state of the feedback con-
troller, be it in thermodynamic equilibrium or not, because
the feedback control is solely characterized by fM̂kg and
fÛkg.

In conclusion, we have extended the second law of
thermodynamics to a situation in which a general thermo-
dynamic process is accompanied by discrete quantum
feedback control. We have applied our main result (12)

to an isothermal process and a heat cycle with two heat
baths, and, respectively, obtained inequalities (14) and
(15). We have identified the maximum work that can be
extracted from a heat bath(s) with feedback control; the
maximum work is characterized by the generalized mutual
information content between the measured system and the
feedback controller.
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