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From the tangential and normal stresses associated with the Helfrich Hamiltonian, we calculate the
lateral force per unit length, �, exerted by a planar, fluctuating membrane, as a function of the membrane
tension � and bending rigidity �. We unveil a confusion in the literature concerning the derivation of �,
and we argue, contrary to the present understanding, that � should differ from the tensionlike coefficient of
the fluctuation spectrum. Nontrivial implications concerning the Laplace pressure in vesicles and its
relation with the excess area are discussed.
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The concept of surface tension for fluid membranes has
always been a difficult one [1–8]. Membranes are thin,
flexible, fluid two-dimensional sheets formed by the self-
assembly into a bilayer of lipid molecules in water [9,10].
Their elasticity is well described by the Helfrich bending
free-energy [11] supplemented by a surface tension term.
An isolated piece of membrane possesses a fixed number
of molecules and exhibits large fluctuations at room tem-
perature. Hence, exerting a moderate lateral tension on it
essentially reduces the amplitude of its fluctuations and
extends its projected area, rather than stretches the bilayer
surface itself [6]. It follows that there is a clear distinction
between the tension � conjugated with the actual mem-
brane area A and the ‘‘frame’’ tension � conjugated with
the projected area Ap [3]. It is the tension �, the lateral
force per unit length, that is experimentally measurable,
e.g., via the Laplace law in micropipette aspiration experi-
ments [12–14]. The parameter � is not directly measur-
able, but its large-scale counterpart r, renormalized by the
fluctuations [2], is measurable through the q2 squared wave
vector dependence of the fluctuation spectrum [15]. When
membrane tension is referred to, it is not always clear
whether �, � or r is meant. A demonstration that r � �
in the thermodynamic limit was proposed in Ref. [4], but
we shall question it.

In this Letter, we directly calculate the tension � from
the stress tensor associated with the Helfrich free-energy
[16,17]. We obtain �� � (to lowest order in a temperature
expansion) by thermally averaging the elastic force ex-
changed laterally through a membrane cut. We discuss
several implications. For instance, we show that the well-
known relation between the membrane tension and its
excess area �A� Ap�=Ap, established by Helfrich [1],
should be amended at low tension in order to refer to �
rather than �. We argue that membranes can sustain mod-
erate negative frame tensions. Importantly, we show that �
does not coincide with the (thermodynamic limit of) the
free-energy per unit projected area, although it is usually

defined this way [3,4]: it follows that r should not coincide
with �. We explain this point by comparing two calcula-
tions of �, obtained by differentiating in different ways the
total free-energy with respect to Ap: the one in the paper by
Cai et al. [4] and a more recent one by Imparato [8]. We
explain why only the latter agrees with our calculation.
Finally, to defend our results, we numerically illustrate
their validity in a Monte Carlo simulation of a one-
dimensional (1d) discrete model of a fluid membrane.

Consider a piece of membrane either isolated or con-
nected to a reservoir of lipids. We shall restrict our atten-
tion to applied lateral tensions � & 10�4 N=m, for which
the area per lipid remains essentially constant [13] (the
tension only hinders the fluctuations). Hence, either the
total area A is constant or there is a reservoir with some
‘‘area chemical potential’’ �. In the limit of large systems,
both ensembles are equivalent and the free-energy
Hamiltonian can be expressed as [11]

 H � �A�
Z �

2
�ck � c?�

2dA: (1)

Here, ck and c? are the membrane principal curvatures.
The parameter � is the (bare) membrane tension, conju-
gated with the actual area. We have omitted the Gaussian
stiffness ��, which enters only when topology changes are
involved. As shown in [16,17], Eq. (1) implies that the
force per unit length exchanged through a cut parallel to an
axis of principal curvature has a tangential component
perpendicular to the cut which is equal to �t � �� �

2 c
2
k
�

�
2 c

2
?, where ck is the curvature in the direction parallel to

the cut, and a component normal to the membrane, �n �
�@x0 �ck � c?�, where x0 is perpendicular to the cut in the
tangent plane. These quantities are the diagonal compo-
nents of the stress tensor �.

We wish to calculate the force � per unit length that must
be applied to the membrane border in order to fix the mean
projected area Ap. For this purpose, we consider an ortho-
normal basis (x, y) in the average plane P of the membrane,
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and we thermally average the force exchanged through a
membrane cut whose projection onto P has a unit length
and is parallel to y. Let the membrane deviation with
respect to P be described by the function z � h�x; y�. As
shown in Ref. [17], the component �xx of the projected
stress tensor, i.e., the stress tensor relative to the projected
cut, takes the form
 

�xx � ��
�
2
�h2
y � h

2
x� �

�
2
�h2
yy � h

2
xx�

� �hx@x�r
2h� �O�h3�; (2)

where the subscripts represent partial differentiation. Since
the fluctuations are symmetric with respect to P and to the
plane perpendicular to P passing through the x axis, we
have simply � � h�xxi, the brackets denoting thermal
average. Let us comment on the form of �xx. The first
three terms arise from the tangential component of the
stress tensor. With respect to the simpler expressions �t �
�� �

2 c
2
k
� �

2 c
2
? in the local tangent frame, the factor 1�

1
2 h

2
x comes from projecting onto Pwhile the factor 1� 1

2h
2
y

comes from the fact that the actual cut is longer than the
projected one. These corrective factors, like those arising
from changing the coordinates from the local tangent basis
to (x, y), do not affect the third term since it is already at
second order: one may recognize the contribution h2

yy

corresponding to the squared curvature in the y direction
and h2

xx corresponding to the squared curvature in the x
direction. The last and fourth term corresponds to the
projection onto (x, y) of the normal component of the stress
tensor. By symmetry, hh2

yi � hh
2
xi and hh2

yyi � hh
2
xxi; hence,

we are left with

 � ’ �� �hhx@x�r
2h�i �O�h4�: (3)

To gain intuition into the physics of this contribution,
consider a fluctuation mode h � hq sin�qx���. It yields
�hx@x�r

2h� � ��q4h2
qcos2�qx���, which is always

negative whatever the phase �. Hence, we expect a reduc-
tion of the effective frame tension (Fig. 1).

To perform the thermal average in Eq. (3), we may
restrict ourselves to the quadratic approximation of H [1]:

 H �h� ’
Z
Ap
dxdy

�
�
2
�r2h�2 �

�
2
�rh�2

�
; (4)

yielding, in Fourier series with periodic boundary condi-
tions, the Gaussian approximation hhqhki0 � kBT��q

2 �

�q4��1�q�k. Note that the actual correlation function,
renormalized by the fluctuations, involves r � ��O�T�
instead of �, i.e., hhqhki � kBT�rq2 �O�q4���1�q�k. To
lowest order, however, the Gaussian approximation is suf-
ficient, yielding from Eq. (3),

 � ’ ��
kBT
2Ap

X
q

�q2

�� �q2 : (5)

This equation actually gives the first term in an expansion
in powers of T (taking into account fourth-order terms and
measure corrections [4] would yield contributions �T2).
The wave vectors range from qmin 	 2�=A1=2

p (going to
zero in the thermodynamic limit) to the upper cutoff � 	
1=a (up to some numerical factor), where a 	 5 nm is the
membrane thickness. Taking the thermodynamic limit and
performing the corresponding integral yields (with 1=� �
kBT)

 �� � ’ �
kBT�2

8�

�
1�

�
�r

ln
�
1�

�r
�

��
	 �

�r
8���

;

(6)

where we have defined �r � ��2, of the order of the
membrane rupture tension (� 	 10�19 J [12] and the
above value of � yields �r 	 5
 10�3 N=m, compatible
with experiments [13]). The final approximation in Eq. (6)
is valid for � & 10�2�r. Note that experimentally, for
tensions � * 10�2�r, the stretching of the lipids (that we
have neglected) should start playing a role [13], yielding
further corrections to the bracket factor in Eq. (6).

Hence, for nonextreme tensions (� & 10�2�r), we ob-
tain simply � ’ �� �0, with

 �0 �
�r

8���

�
�
kBT�2

8�

�
: (7)

With the above values (yielding 8��� 	 500), we obtain
�0 	 5
 10�6 N=m (correct up to some numerical factor,
given the inaccuracy on �2). This is not a negligible
correction, since the spontaneous tension of floppy vesicles
can be as low as r 	 10�8 N=m, as measured by contour
fluctuation analysis [15].

Whereas � is not directly measurable, it may be related
with the excess area � � �hAi � Ap�=Ap ’ h

1
2 �rh�

2i,
which is observable [12–14]. As shown by Helfrich, using
the Gaussian approximation of the correlation function
(hence at first order in T) [1],

 � ’
kBT
2Ap

X
q

1

�� �q2 ’
kBT
8��

ln
�
�� �r

�� � �2��
2

Ap

�
: (8)

FIG. 1. Side view of a membrane fluctuation with a nonzero
curvature gradient at the border. While the tangential stress �t
gives an average projection onto x equal to �, the normal stress
�n � �@x0 �ck � c?� gives an average projection 	 �0 reducing
the effective tension exerted on the frame.
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One should remember that it is � and not � that one can
measure or impose mechanically, e.g., by the Laplace
pressure in micropipette experiments. Hence, since � ’
�� �0, we find, in the range of practical interest, �=Ap �
� & 10�2�r,

 j�j ’
kBT
8��

ln
�
�r
’
kBT
8��

ln
�0 � �
�r

: (9)

Hence, micropipette experiments should reveal at very low
tension (i.e., for � � 5
 10�6 N=m) some deviation with
respect to a linear relationship between � and ln�. This
effect has never been reported, but it might have been
concealed by an underestimation of the tension produced
by the minimum pressure allowing to grab the vesicle [18].

It follows from Eq. (9) that the natural excess area
produced by a membrane subject to no external force,
i.e., for � � 0, is given, within our approximations, by
�eq ’ ln�8����=�8����. This yields �eq ’ 0:03, 0.01,
0.005 for �� � 5, 25, 50, respectively. Note that tradition-
ally, one sets instead � � 0 in Eq. (8), which yields �eq ’

ln��
������
Ap

p
=�2���=�4����, displaying an explicit logarith-

mic dependence on the lateral size of the membrane. This
result, however, is meaningless, because � is not a control
parameter. Actually, the question of the dependence of �eq

on Ap is delicate, because renormalization group (RG)
calculations show that � effectively depends on the mem-
brane size according to � 	 Cst� �3kBT=�8��� ln�Ap=a

2�

[19]. This will yield, however, a much weaker dependence
of �eq on Ap: a constant plus a very small logarithmic
correction instead of a direct logarithmic dependence [20].
Note that �eq was obtained to lowest order in T; taking into
account higher-order terms and measure corrections [4]
should yield the secondary dependence in Ap compatible
with the RG analysis.

In principle, the frame tension � can also be calculated
from � � @F=@Ap, where F is the total free-energy. This
route, however, is very tricky. Starting from the
Hamiltonian Eq. (4), both Refs. [4,8] show that F may be
expressed, to lowest order in T, as

 F � �Ap �
kBT

2

X
q

ln
�
��q2 � �q4�

�a2	2

2�kBT

�
; (10)

where 	 is a quantum discretizing the membrane vertical
displacements and �a2 � Ap=N � 4�=�2, N being the
total number of modes or degrees of freedom. As shown
in Ref. [4], measure corrections and higher-order terms in
the Hamiltonian give corrections of order T2. Taking first
the thermodynamic limit, then differentiating with respect
to Ap, or doing the opposite, yields two different results.
The former choice yields [4]

 

@F
@Ap

���
kBT

2

Z d2q

�2��2
ln
�
��q2��q4�

�a2	2

2�kBT

�
: (11)

The latter choice, taking into account the quantification
q � 2�A�1=2

p �n;m�, yields [8]

 

@F
@Ap

��������N
� ��

kBT
2Ap

X
q

��q2 � 2�q4

�q2 � �q4 �
NkBT
2Ap

; (12)

where the last term comes from @�ln �a2�=@ApjN � 1=Ap.
This expression matches exactly the right-hand side of our
Eq. (5), since N �

P
q. The main difference between the

approach of Ref. [8] and that of Ref. [4] is that the number
of modes is kept fixed in the former and not in the latter.
This result shows both the correctness of the approach of
Ref. [8] and of our result obtained from the stress tensor.
Another implication is that the demonstration of Ref. [4]
that r � @Flim=@Ap, where Flim is the thermodynamic
limit of F, should not be interpreted as a demonstration
that r � �. In general, one should thus expect r � � � �.

In order to check the validity of our results, we have
performed a Monte Carlo simulation of a discrete model of
the Hamiltonian (1). We chose a 1dmodel in order to avoid
the complex issue of the phase-space measure that arises
when dealing with surfaces, while retaining all the essen-
tial features. The 1d membrane is a chain of N rodlike
segments of length ’ a, with bending rigidity in the joints,
that is subject to an applied external force � (Fig. 2). The
microstates are described by the variables f
1; . . . ; 
N; �g,
where 
j is the angle between segment j and the reference
x axis, and � is a global variable used to let the membrane
length L � Na�1� �� fluctuate in the corresponding en-
semble. The Hamiltonian is

FIG. 2. Discrete 1d-membrane model (inset). Numerical deter-
mination of the normalized membrane tension � (upper data),
tangential stress at the extremity h�ti  h��

1
2�c

2
N�1i (lower

data) and imposed frame tension � (lowest data, superimposed)
vs. the shortening of the projected length Na� hRi. Here, N �
50 and �� � 125a (persistence length). The dashed lines are
guides for the eye.
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 H 1 � �L�
L
N

XN�1

j�1

1

2
�c2

j � �R; (13)

where cj � �
j�1 � 
j�=�L=N� and the end-to-end vector
is given by R � �L=N�

PN
j�1 u�
j�, u�
� denoting the unit

vector at the angle 
 with respect to the x axis. We impose
the boundary condition u�
N� k R; hence, both the applied
force and the direction of the last segment are parallel to
the end-to-end vector.

For each imposed value of �, we adjust � in order to fix
hLi � Na, i.e., h�i � 0. In agreement with the previous 2d
analysis, we obtain � < � (Fig. 2). Note that � is strictly
positive at zero applied force (� � 0) and that the mem-
brane does not buckle for small negative values of � (the
buckling transition is outside the scope of this Letter).
Now, in 1d, the tangential stress reduces to �t �
�� �

2 c
2 [17]. If our analysis in terms of the stress tensor

is correct, we must find � ’ h�� �
2 c

2
N�1i, given the tan-

gential boundary condition. This is indeed the case, as
shown in Fig. 2, the very small discrepancy originating
from the discreteness of the model.

We now reproduce in 1d the analytical calculation
giving � from the stress tensor. From � � h�xxi ’
h�� �

2 h
2
x �

�
2 h

2
xx � �hxhxxxi, we obtain � ’ ��

1
2 kBTR

�1P
q��� 3�q2�=��� �q2�, yielding

 �� � ’ �
3kBT�

2�

�
1�

2

3

���������
�

��2

r
arctan

���������
��2

�

s �
: (14)

This equation is the equivalent of Eq. (6) in 1d. As shown
in Fig. 3, the agreement with the numerical data is excel-

lent for � � 1:1a�1 (one-parameter fit), which is a very
reasonable value for the cutoff.

We now check the difference between � and r.
Following the normal gauge definition [4], we define, for
any point x on the end-to-end axis fO; Rg, ��x� � 
i �

N , i being the segment whose projection onto fO; Rg
contains x. From �n �

R
R
0 dr��x� exp��in2�x=R�, we

fit hj�nj
2i�1 � ��r� �q2 �O�q4��, where q �

n2�=hRi. As shown in Fig. 3, r and � are different in a
nontrivial way: the sign of r� � changes at low tensions
and r � � even at high tensions. A detailed study of this
behavior is outside the scope of this Letter.

In conclusion, we have devised a new and efficient
method to calculate the lateral frame tension � of mem-
branes. We showed that � differs from the tensionlike
coefficient r of the fluctuation spectrum, and we unveiled
the correct way to derive � from the free-energy. Our
results could be checked experimentally by finely analyz-
ing the membrane excess area of vesicles under very low
Laplace pressures.
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