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We present a maximum entropy approach for inferring amino acid interactions in proteins subject to
constraints pertaining to the mean numbers of various types of equilibrium contacts for a given sequence
or a set of sequences. We have carried out several kinds of tests for a two-dimensional lattice model with
just two types of amino acids with very promising results. We also show that the method works very well
even when the mean numbers of contacts are not known and therefore can be applied to real proteins.
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Globular proteins [1], the workhorse molecules of life,
are linear chains of amino acids which fold rapidly and
reproducibly into their native state conformations [2]. An
important goal in the protein problem is the prediction of
the native state structure given the amino acid sequence of
a protein. A vast simplification arises because the number
of distinct folds adopted by proteins is limited to just a few
thousand [3]. This has led to a powerful method, called
threading [4], for predicting the native state structure of a
sequence—one mounts the sequence on candidate struc-
tures obtained as pieces of all known folds and determines
the best fit structure through a scoring function [5-7],
which provides a measure of the interactions between pairs
of amino acids which are close by in a given conformation.

Our principal goal is to present and validate a
knowledge-based method, using the principle of maximum
entropy [8—10] for determining the scoring function sub-
ject to constraints pertaining to the mean numbers of
various types of equilibrium contacts for a given sequence
or a set of sequences. At zero temperature, this information
is encoded in the native state structures of the sequences. In
order to assess how well our method works and its ease of
application, we will focus on extensive studies of the lattice
HP model pioneered by Chan and Dill [11]. This model,
while simple enough for exact enumerative studies, pro-
vides an unbiased framework for carrying out an extensive
series of tests.

Entropy maximization has proved powerful in the deri-
vation of equilibrium statistical mechanics [8], and in the
analysis of complex equilibrium and nonequilibrium sys-
tems as neural networks [9] and global climate [10]. The
underlying rationale is that each macroscopically observ-
able state of a system corresponds to a number of micro-
scopic states satisfying known macroscopic constraints.
Because the number of ways of realizing a given macro-
scopic state can vary widely, the most likely state of the
system as a whole is the one that corresponds to the largest
number of microscopic states. As pointed out by Shannon
[8], information and entropy are interlinked: the more
information one has, the lower the entropy. The logic of
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our approach is to determine the scoring function subject to
the entropy-reducing constraint that the available informa-
tion on the mean number of certain contacts is faithfully
encoded. Because the resulting scoring function is selected
by the maximum entropy principle and assumes nothing
about missing information, any system with lower entropy
requires more information than is available from the given
data.

Let C be the space of possible conformations and P(T")
the probability of a given sequence S adopting conforma-
tion I'. The Shannon entropy is defined as

S(P)= —> P(I)InP(I). (1)

rec

Let the average values ¢, of various observable quantities
C,(IN,a=0,1,..., be specified:

C, =Y C,MPT) = ¢, (2)
r

This description includes the normalization condition,
SrP(I') =1 on choosing Cy(I') =1 and ¢y = 1. The
maximum entropy principle states that the optimal choice
for P is one that maximizes the entropy S while satisfying
the constraints given by Eq. (2). This solution is unique.
This is because the entropy S(P) is a convex function and
its domain in P space is compact. Since the constraints are
linear, from the theory of convex functions, S(P) has a
single maximum. On using a set of N Lagrange multipliers

(A} = Ay, Ay, ..., Ay) to enforce the constraints, the so-
lution takes the form
P(T) = Z({Az) " e2ms CON, 3)
where
Z(AY) = Y e GO @)
T

and the A};’s satisfy the equation
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a I @ a=1...,N. (5
a

Numerically, an efficient way to obtain the solution of
Eq. (5) is by finding the minimum of the quantity

N
DA =Z{AD = > cala, (6)
a=1

which is unique since 9°D/dA,dA, =(C, —c,)(C;, —cp)
is positive definite.

The analysis can be extended to the quenched case of the
simultaneous consideration of many sequences (we denote
a sequence by S). In this case the probability P(I'|S), the
observables Ca(I‘IS'), and their average values over con-
formations C,(S) = S 1ecC,(CIS)P(T'|S) depend on an-
other statistical variable, S. The constraint is then
imposed through the quenched average

(€)= Cu§ q(S) = c, (7
S

where q(S’) represents the probability of occurrence of the
variable S. This case can be mapped into the standard one
by introducing the joint probability distribution

P,(T, 8) = P(T1$)q(S) ®)
where ¢(S) is given a priori and the entropy is
S(Py) = =Y P, (T, 8)InP,(T, $) = (S(P)) + S(q). (9)
r.§

Its maximum is given by the straightforward general-
ization of Egs. (3) and (4), where the A}s satisfy the
equation

) — < _ d{InZ)

A=rn 0A,

=c,  (10)
Aa=25

d1nZ
)

where

(InZ({A1) = q(8) InZ({AHS3). (11)
S

This is (apart from the —«gT term) the quenched free
energy used in the standard approach of disordered statis-
tical mechanics systems (see, e.g., [12]). Again the A}’s
correspond to the unique minimum of the function

N
D,({A}) = IZ{AD) = > cihe (12)
a=1

We now proceed to illustrate the method and carry out
several tests of its efficiency within the framework of the
HP lattice model in two dimensions [11]. It has been
recognized that in proteins a simply binary pattern of
hydrophobic and hydrophilic residues along the chain
encode structure at the coarse grained level [13]. Thus
the simplest model of proteins consists of sequences
made up of just two kinds of amino acids (H and P

representing hydrophobic and polar residues) configured
as self-avoiding chains on a lattice and described by a
contact Hamiltonian [11]. Such models are known to ade-
quately describe proteins at the coarse-grained level with
the advantage that the native states can be determined
exactly. Furthermore, they provided a controlled laboratory
for theoretical investigations and rigorous testing of con-
cepts and ideas for future use in studies on real proteins
[7,11,14]. We work with short chains constrained to lie on a
square lattice. Two amino acids interact when they sit next
to each other and are not contiguous along the chain,
yielding a scoring energy function

3
H ([, 8) = = €,C,(T13), (13)
a=1

where the index a = 1, 2, 3 labels HH, HP, and PP type of
interactions, respectively, and Ca(I‘IS‘) counts the number
of type a interactions when the sequence S is in the con-
formation I'. In order to assess the effect of a redundant,
incomplete, or wrong parametrization, we have considered
a second scoring function to include next nearest neighbor
interactions

6
H ([, 8) = = > €,C,(T13), (14)
a=1

where the index a = 4, 5, 6 labels next nearest neighbor
interactions of type HH, HP, and PP, respectively. The
hydrophobic nature of a protein is encapsulated typically
by using a scoring function in which HH contacts are
favored over HP and PP contacts. In our studies, we
considered different choices of the interactions energies.
Most of our studies were carried out with a chain of length
L = 16 for which there is an ensemble C of 802075 dis-
tinct (compact and noncompact) conformations I" unre-
lated by simple symmetry transformations. We also
considered chains of length L = 12 in additional tests.
The Lagrange multipliers which minimize the functions
D and D, in Egs. (6) and (11) are estimates of the inter-
action energies k:“T in Egs. (13) and (14).

We have carried out two classes of tests. The first entails
(i) choosing the interaction energies, (ii) determining the
Boltzmann probability distribution

_ r.s
expl=2059

—H{TS)
récexp[ kT ]

PT|S) =

(15)

and then the average number of different types of contacts
in equilibrium at a given temperature through exact enu-
meration [using Eq. (2) for a single sequence and Eq. (7)
for the quenched case, with ¢(S) = 1/N, for N, sequen-
ces], (iii) using the c, as constraints in the maximum
entropy approach to estimate the interaction energies and
assess the quality of agreement of these estimates with the
actual values (the scoring function J{ could be either H ,,,
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TABLE I. Reconstruction of interaction energies with the
maximum entropy procedure. These results were obtained for
both a single, randomly selected sequence, and for ten different
sequences in the quenched case. In all cases, the chain had a
length of 16.

kgT € € €3 kgT A} kpT A5 kpT A3
1.0 1 0 0 1.0000  0.0000 0.0000
2.0 1 0 0 1.0000  0.0000 0.0000
0.5 1 0 0 1.0000  0.0000 0.0000
1.0 1 0.5 -0.2 1.0000  0.5000 —0.2000
2.0 1 0.5 -0.2 1.0000  0.5000 —0.2000
0.5 1 0.5 -0.2 1.0000  0.5000 —0.2000

or H ,,,). We have carried out extensive studies and in all
cases (single sequence, multiple sequences, either of the
same or of different lengths, contact potentials excluding
or including next nearest neighbors, calculations at differ-
ent temperatures) the results are excellent with the deduced
scoring function being virtually exact, as summarized in
Tables I, II, and III.

The equilibrium stability of various contacts of a specific
protein sequence or set of sequences could be in principle
deduced by means of NMR experiments, but this would
require the computation of the partition function (4) many
different times within the entropy maximization procedure.
More simply, one can test or deduce scoring function by
ranking the native state against competitive conformations
called decoys. In this spirit, we carried out a second class of
tests of the HP model employing the knowledge of the
ground state conformation for a given sequence as well
information pertaining to the native state conformations for
other sequences to be used as decoys. In order to obtain a
measure of the mean numbers of different contacts, we
postulated that a given sequence has probability P to be in
its native state and a probability (1 — Py)/(M — 1) (where
M is the number of known ground state conformations in
the data bank) of being in one of the other structures. We
note that there are simple alternative schemes that one
might consider—the key point is that the maximum en-
tropy method works well even if the average numbers of
contacts are not known with great accuracy.

We considered the ensemble GS of the nondegenerate
conformations which are unique ground states for the HP
model with nearest neighbor interactions and interaction

TABLE II. Reconstruction of interaction energies with the
maximum entropy procedure in the quenched case with multiple
sequences having different lengths. These results were obtained
by averaging over 6 sequences of length L = 16 and 4 of length
L =12

kBT €] €) €3 kBTAT kBT)l; kBT)l;

1.0 1 0.5 -0.2 1.0000  0.5000  —0.2000
1.0 1.5 0.7 -02 1.5000 0.7000  —0.2000
1.0 1.66 041 0.14  1.6600 0.4100 0.1400

TABLE III. Reconstruction of interaction energies with the
maximum entropy procedure in the presence of next nearest
neighbor interactions for a single, randomly selected, sequence.
In all rows, €, = 1, €, = 0, €3 = 0, with a chain of length 16. In
all rows, but the second one, €, = 0.5, €5 = 0.2, €, = —0.1. In
the first row, the full knowledge of the scoring function is used
and all six A*’s are determined. In the second row, the next
nearest neighbor interaction strengths are set equal to zero and
all six A*’s are determined. In the third and fourth row, only the
three A™’s corresponding to nearest neighbor interactions are
reconstructed. Interestingly, when one uses a subset of con-
straints, the results are temperature dependent. This property
can be used to assess whether our parametrization of the scoring
function is complete or not. The {A}} are different from the
original ones, as expected. Yet, the sequence with the recon-
structed energies of interaction yield exactly the same ground
state as the original scoring function with all 6 energy parame-
ters.

ksT — kpTAr  kyTAS  kgTX: kT,  kyTAL  kpTAL
1 1.000 00000 00000 05000 02000 —0.1000
1 1.000 00000 00000 0.0000 0.0000  0.0000
1 1.8147 04642 0.1180
2 17146 04808 0.1596

strength ey = 5, egp = 3, €pp = 1. The number of such
conformations is M = 1131 and the partition function Z
was computed on the ensemble GS, while implementing
the maximum entropy procedure. We then used the solu-
tion A}, A3, A5 and assessed how many of the 17021
sequences with a unique ground state have their native
state conformation as their ground state among all the
802075 conformations (not just the ensemble GS).
Figure 1 reports the rate of success as a function of the
probability P, of occupancy of the ground state for differ-
ent cases. When single sequences were considered, the rate

[ T T T T T
1
0.8 -
5
1 sequence
§ 0.6 __ 1 sequence
“5 10 sequences
o L 100 sequences
§ 04 100 sequences | |
ol M
ol 1 1 1 1
0 0.2 0.4 0.6 0.8 1
P0
FIG. 1. Fraction of the 17 021 sequences, with a unique ground

state (e; = 5, €, = 3, €, = 1) in Eq. (13), for which the maxi-
mum entropy method correctly predicts the true ground state as a
function of the probability P,. The different curves correspond to
different sequence sets considered.
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of success was strongly dependent on the chosen sequence.
For a given sequence, the method worked with varying
degree of success for an optimal value of P, for which the
actual Boltzmann distribution obtained with the Lagrange
multipliers [Eq. (3)] approximated our assumption of a
probability P, of being in the ground state and an equal
probability of all remaining conformations.

On averaging multiple sequences together (quenched
case), one would expect an overall smoothing to occur so
that, at low temperatures (high P), our assumption might
well be satisfied approximately. This is indeed the case for
the quenched case of 10 sequences and the situation is
much improved when 100 sequences are considered. For
two distinct sets of sequences, we obtained 100% success,
for values of P, greater than (.95, in predicting the native
state structure of all the sequences from the deduced
interaction energies.

In summary, we have presented a novel method for
determining the all-important scoring function for the in-
teraction between amino acids of a protein. The method
entails the use of the principle of maximum entropy which
provides an unbiased method for inferring the scoring
function while incorporating all available information,
thus entirely avoiding unwarranted assumptions which
may be present in other approaches [15]. Detailed studies
on a lattice HP model have yielded very promising re-
sults. Note that there are other methods which work well
in the context of lattice models [6,7,16]. However, in such
approaches, the energy parameters are typically obtained
by ensuring that the native state conformation has a
lower energy than the alternative conformations. In gen-
eral, one encounters situations in which the problem is
unlearnable [17] and no solution exists. In contrast, in
our approach, one is guaranteed to find the optimal so-
lution which satisfies physical constraints derived from
experimental observations in terms of average values.
This is quite important in light of one’s increasing ability
to perform single molecule experiments. Furthermore,
the ease with which one can incorporate other informa-
tion such as the solvent accessible area and/or local con-
formational biases make the maximum entropy infer-
ence (maxent) approach a very promising tool for study
of the daunting protein problem. We have employed the
procedure employed in the second class of tests to inves-
tigate a single protein sequence (PDB code ICTF) to-
gether with 498 decoys from the local minima decoy set
(Imds) [18]. By defining the scoring function in terms of
solvent accessible areas, 20 surface tension parameters
are recovered using the maxent method which correctly
selects the native state conformation from among all the
decoys [19].
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(1]

(2]
(3]

(4]
(5]
(6]
[71

(8]

(91
[10]

(1]

[12]

(13]

[14]

078102-4

A.R. Fersht, Structure and Mechanism in Protein Science:
A Guide to Enzyme Catalysis and Protein Folding (W. H.
Freeman and Company, New York, 1999).

C.B. Anfinsen, Science 181, 223 (1973).

C. Chothia, Nature (London) 357, 543 (1992); M. Denton
and C. Marshall, Nature (London) 410, 417 (2001); T. X.
Hoang, A. Trovato, F. Seno, J. R. Banavar, and A. Maritan,
Proc. Natl. Acad. Sci. U.S.A. 101, 7960 (2004).

D.T. Jones, W.R. Taylor, and J.M. Thornton, Nature
(London) 358, 86 (1992).

S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534
(1985); M. J. Sippl, Curr. Opin. Struct. Biol. 5, 229 (1995).
V.N. Maiorov and G.M. Crippen, J. Mol. Biol. 227, 876
(1992).

F. Seno, A. Maritan, and J.R. Banavar, Proteins: Struct.
Funct. Genet. 30, 244 (1998); J. van Mourik, C. Clementi,
A. Maritan, F. Seno, and J.R. Banavar, J. Chem. Phys.
110, 10123 (1999).

L. Boltzmann, Lectures on Gas Theory (Cambridge
University Press, London, U.K., 1964); C.E. Shannon,
Bell Syst. Tech. J. 27, 379 (1948); E.T. Jaynes, Phys.
Rev. 106, 620 (1957); E.T. Jaynes, Phys. Rev. 108, 171
(1957); E.T. Jaynes, Probability Theory (Cambridge
University Press, London, U.K., 2003).

E. Schneidman, M.J. Berry, R. Segev, and W. Bialek,
Nature (London) 440, 1007 (2006).

R.C. Dewar, J. Phys. A 36, 631 (2003); R.C. Dewar,
J. Phys. A 38, L371 (2005).

K.F.Lau and K. A. Dill, Macromolecules 22, 3986 (1989);
K. A. Dill, S. Bromberg, S. Yue, K. Fiebig, K. M. Yee,
P.D. Thomas, and H. S. Chan, Protein Sci. 4, 561 (1995).
M. Mezard, G. Parisi, and M. Virasoro, Spin Glasses
Theory and Beyond (World Scientific, Singapore, 1987).
Y. Kuroda, T. Nakai, and T. Ohkubo, J. Mol. Biol. 236,
862 (1994); T.P. Quinn, N.B. Tweedy, R. W. Williams,
J.S. Richardson, and D. C. Richardson, Proc. Natl. Acad.
Sci. U.S.A. 91, 8747 (1994); S. Kamtekar, J. M. Schiffer,
H. Xiong, J.M. Babik, and M.H. Hecht, Science 262,
1680 (1993).

K. Yue, K.M. Fiebig, P.D. Thomas, H.S. Chan, E.IL
Shakhnovich, and K.A. Dill, Proc. Natl. Acad. Sci.
U.S.A. 92, 325 (1995); J.M. Deutsch and T. Kurosky,
Phys. Rev. Lett. 76, 323 (1996); F. Seno, M. Vendruscolo,
A. Maritan, and J.R. Banavar, Phys. Rev. Lett. 77, 1901
(1996); F. Seno, C. Micheletti, A. Maritan, and J.R.
Banavar, Phys. Rev. Lett. 81, 2172 (1998).

P.D. Thomas and K. A. Dill, J. Mol. Biol. 257, 457 (1996);
G. Tiana, D. Colombo, D. Provasi, and R.A. Broglia,
J. Phys. Condens. Matter 16, 2551 (2004).

G. Salvi and P. De Los Rios, Phys. Rev. Lett. 91, 258102
(2003).

M. Vendruscolo and E. Domany, Proteins: Struct. Funct.
Genet. 38, 134 (2000).

R. Samudrala and M. Levitt, Protein Sci. 9, 1399 (2000).
T.X. Hoang, F. Seno, A. Trovato, J.R. Banavar, and
A. Maritan (to be published).



