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The deformation of an elastic rod rotating in a viscous fluid is considered, with applications related to
flagellar motility. The rod is tilted relative to the rotation axis, and experiments and theory are used to
study the shape transition when driven either at constant torque or at constant speed. At low applied
torque, the rod bends gently and generates small propulsive force. At a critical torque, the rotation speed
increases abruptly, and the rod forms a helical shape with increased propulsive force. We find good
agreement between theory and experiment. A simple physical model is presented to capture and explain
the essential behavior.
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Understanding how flagella and cilia work is a central
aim of the field of cell motility. The problem may be split
into two parts: the means of actuation and the fluid-
structure interaction. In this Letter, we consider the fluid-
structure interaction for thin filaments in a viscous fluid. At
micron scales, viscous effects dominate inertia, and the
fluid-structure interaction problem simplifies because the
Stokes equations governing the fluid motion are linear.
Gray and Hancock used this linearity to develop a simple
theory that successfully predicted the swimming speed of a
sperm cell with a load-independent pattern of bending
waves propagating along the flagellum [1]. Soon after,
Machin considered the fluid-structure interaction [2]. He
argued that the motors must be distributed along the length
of the flagellum, since, for small amplitudes, a passive
flexible rod waved at one end has an exponentially decay-
ing envelop of deflection, whereas the amplitude of de-
flection in real flagellar bending waves increases slightly
with distance from the head [2]. The shapes and propulsive
forces of a passive rod actuated at one end have recently
been examined theoretically [3,4] and experimentally [4].
Although sperm flagella are not passive, the results of [2–
4] are important for modeling real flagella since the modes
that Machin found also enter models in which the flagellum
is actuated along its entire length [5].

Rotating flagella are also common. For example, nodal
cilia [6] have an internal structure similar to that of sperm
flagella. However, instead of beating in a plane like most
sperm flagella, nodal cilia rotate along the surface of an
imaginary cone. The flow set up by these flagella has been
implicated in the formation of left-right asymmetry in
developing embryos (see [6] and references therein).
Bacterial flagella provide another example. These flagella
are helical, much thinner than eukaryotic flagella, and
driven by a rotary motor embedded in the cell wall.
Fluid-structure interactions are important for polymorphic
transformations in swimming bacteria [7] and the bundling
of multiple flagella [8].

Complementary to the problem of understanding how
biological flagella work is the problem of building an
artificial microscopic flagellum-propelled swimmer, re-

cently demonstrated by Dreyfus et al. [9], who used a
rotating external magnetic field to generate propagating
planar bending waves in a filament composed of a string of
colloidal magnetic particles. A challenge in building an
artificial microscopic swimmer is the means of actuation.
Manghi et al. proposed a mechanism in which a micro-
scopic flexible rod rotates along the surface of an imagi-
nary cone [10,11]. Using numerical methods, they
predicted that at a critical driving torque, the rod will
undergo a discontinuous transition to a helical shape with
significant propulsive force, independent of the sense of
rotation. In this Letter, we present a macroscopic experi-
mental realization of this system, as well as new theoretical
results that complement previous hydrodynamic calcula-
tions [10,11]. In addition, we present a simple physical
model which captures the essential physics, and helps in
the interpretation of the observed behavior.

In our experiment, a servo motor rotates a flexible rod in
highly viscous silicone oil. The rod is connected to the
motor shaft such that the base of the rod makes a fixed
angle with the rotation axis [Fig. 1(a)]. The motor may be
operated either at constant speed or at constant torque. The
range of torques explored was 0.5 to 8 mN m, and the
maximum rotation frequency was less than 0.3 Hz. The
rod is a steel extension spring wrapped in TeflonTM tape;
the tape stiffens the rod to minimize sagging. The diameter
of the rod is a � 2:5 mm, and the bending modulus is A �
3� 10�3 N=m2. Rod lengths L from 210 to 290 mm were
tested. The silicone oil has viscosity � � 110 N m2=s and
is held in a tank 420 mm on each side. With these parame-
ters, the Reynolds number Re � �vL=� � 10�1, where
� � 103 kg=m3 is the fluid density, v � 10�1 m=s is the
typical velocity of the free end of the rod, and L �
10�1 m. Front and side images of the steady-state three-
dimensional shape of the rotating rod at each torque were
captured using a single camera and a single mirror. The
imaging system was carefully calibrated to account for
perspective, achieving an accuracy of �2 mm.

At low torque, the rotation speed is relatively slow, and
the rod bends slightly [Fig. 1(a)]. Above a critical torque,
the rod adopts a helical shape and rotates much faster
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[Fig. 1(b)]. To illustrate the physics, we first present a
simple analysis of this shape transition using the lumped
parameter model shown in Fig. 2. The rod is modeled by
two rigid links of unit length connected by a torsional
spring. The linkOP is fixed at angle � between the rotation
axis ẑ and the base of the rod in our experiment. Since the
Reynolds number is small, we take Re � 0. Thus, we may
work in the rod’s rotating rest frame without introducing
fictitious forces. The flow in this frame at point r is!ẑ� r.
The torsional spring represents the bending resistance and
is only sensitive to changes in the angle between the
vectorsOP and PQ. Assuming �� 1 andK is sufficiently
large, the moment about P on PQ from the spring is Mb �
K�OP� PQ� � K�y; 2�� x; 0�, where K is the torsional
spring constant, and �x; y; 2� � rQ is the position of the
point Q to leading order in �. To find the steady-state
position of Q, equate the moment on PQ due to the tor-
sional spring to the moment on PQ due to the flow.
Assuming all drag on PQ is concentrated at Q (Fig. 2),
the viscous moment about P is Mv � ��!�x; y; 0�, where
� is a resistance coefficient. Solving moment balance for x
and y yields x � 2�=	1
 ��!=K�2� and y � x�!=K. As

! increases from zero, the link PQ deflects and y in-
creases, which causes Q to experience a viscous force in
the negative x direction. These forces push Q toward the
rotation axis, and tend to cause the rod in our experiment to
wrap around the z axis. As ! increases further, Q moves
closer to the rotation axis, and y begins to decrease. There
is also some drag on the linkOP, concentrated a distance d
from O. The moment about O due to flow is

 MO � �!�2

�
d2 


4

1
 �2!2=K2

�
: (1)

For d2 < 1=2, we find that the moment first increases with
!, then decreases as the link folds in toward the rotation
axis where the flow is slow. The moment then increases
again as the drag from the base link OP dominates. If MO
is plotted vs !, then we find an S-shaped curve, just as in
our experiment (Fig. 3), with discontinuous transitions in
shape and speed as moment varies.

We now turn to a more complete quantitative analysis.
We will continue to prescribe ! rather than motor torque
Mm, and we limit the analysis to steady-state shapes.
Unlike Manghi et al. [10,11], we disregard hydrodynamic
interactions between distant parts of the rod and use resis-
tive force theory to model the force per unit length f acting
on the rod [1,12]:

 f � �?�v� rsrs � v� 
 �krsrs � v; (2)

where �? � 4��=	log�L=a� 
 1=2� and �k �
2��=	log�L=a� � 1=2� � �?=2, r�s; t� is the position of
the point on the rod center line with arclength s at time t,
v�s; t� is the velocity of the undisturbed flow relative to the
velocity of the rod at s, and rs � @r=@s is the tangent
vector to the rod center line. There is also a hydrodynamic
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FIG. 2. Lumped parameter model consisting of two rigid links
connected by a torsional spring (open circle). The top link is
clamped. All drag is concentrated at the two filled circles.
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FIG. 3 (color online). Dimensionless motor torque MmL=A
was measured as a function of dimensionless speed � for L �
250 mm () and L � 290 mm (4) with angle � � 26�. For
L � 250 mm, speed was measured as a function of increasing
torque (�) and decreasing torque (�). Note the hysteresis. The
linear (dashed line) and nonlinear (solid line) predictions are
shown. The insets show examples of the steady-state filament
shapes in the low (left) and high (right) speed regimes.

θ

FIG. 1. Orthogonal images of steady-state shapes of rotating
rod with torque just below (a) and just above (b) the critical
torque. The motor (not shown) is at the top, with rotation axis
along z. Gravity points down. In (a) and (b), the left panel is the
side view, and the right panel is the front view. The rod is marked
with white dots for contrast. The axes in (b) are the same as in
(a). The curved arrow in (b) denotes the sense of rotation of the
rod.
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torque distributed along the rod which induces twist [13–
15]. However, the effects of this torque are smaller by a
factor of �a=L�2 relative to effects due to translation of the
rod [13] and will henceforth be disregarded. The constitu-
tive relation for the elastic rod is

 M � Ars � rss; (3)

where M is the moment due to internal stresses exerted on
the cross section of the rod at s, and A is the bending
modulus [16]. The shape of the rod is determined by force
and moment balance,

 F s 
 f
 fg � 0 (4)

 M s 
 rs � F � 0; (5)

where F is the force due to internal stresses acting on the
rod cross section at s, Fs � @F=@s, and fg � ��rod �

�a2�oil�gẑ is the buoyancy force per unit length due to
the density difference between the rod (linear density
�rod � 0:0478 kg=m with oil inside) and silicone oil
(�oil � 970 kg=m3). The boundary conditions are r�0� �
0, rs�0� � x̂ sin�
 ẑ cos�, F�L� � 0, and M�L� � 0 [16].
As in the lumped parameter model, v � !ẑ� r at steady
state in the rod frame.

The primary dimensionless groups governing the rod
shape are the angle � and the dimensionless rotation speed
� � �!L4=A � �L=‘�4, where ‘ � 	A=��!��1=4 is the
characteristic length scale determined by bending resist-
ance and viscous drag [2,3]. In addition, the aspect ratio
L=a and the nondimensional gravitational force
g�rodL

3=A are included in the analysis, but not parametri-
cally explored since they play a minor role. Figure 3 shows
that experimental measurements, using two rod lengths,
collapse well onto a single curve when dimensionless
speed, �, is plotted against dimensionless motor torque,
MmL=A. The open symbols represent constant velocity
rotation and trace out the entire S-shaped curve. The
filament shape is stable at every prescribed value of �,
and the shape changes continuously from the slightly bent
shape to a helical shape as � increases. The closed symbols
represent constant torque operation. When driven at con-
stant torque, there is a discontinuity in rotation speed and
filament shape at two different torque values, depending if
torque is ascending or descending. For descending torque,
the time to reach steady state is prohibitively long, and the
diamond symbols lying above the curve in Fig. 3 represent
shapes that are relaxing slowly to steady state.

The nonlinear behavior of the speed-torque curve dis-
played in Fig. 3 can be qualitatively explained using linear
approximations valid for small rod deflections. For small �,
the rod is aligned mainly along the z-axis and, disregarding
gravity, the deflection r?�z� � �x�z�; y�z�� obeys

 �A
@4r?
@z4 
�?!ẑ�r?�0: �‘4@

4r?
@z4 
 ẑ�r?�0:

(6)

The solution to Eq. (6) is a generalization of Machin’s
solution to the in-plane bending problem [2], and of the
same form as the solution for a flexible rod held parallel to
but some distance from the axis of rotation [17].

To calculate the torque Mm required to rotate the rod at
speed!, observe that the moment due to viscous drag must
equal the elastic moment at the base of the rod:

 Mm � �ẑ �
Z

r� fds � �Aẑ � rs � rss�0�: (7)

The second equality of (7) follows from (4) and (5). The
results of the linear calculation for driving torque vs speed
are shown in Fig. 3 along with the experimental data for
� � 26�. For small �, Mm increases linearly with �. For
large �, Eq. (6) implies that the shape of the rod is helical
with an envelope that decays exponentially with length
scale ‘. Assuming isotropy x� y and using force balance
(6), the viscous force per length f� �!y� Ay=‘4, which
implies a total viscous moment MvL=A� Ly2=‘3. On the
other hand, the bending moment at the base of the rod
scales as MbL=A� yL=‘

2. Equating Mv and Mb yields
y� ‘ � L��1=4 [18]. Thus, for �� 1, the motor torque
must scale as MmL=A� �

1=4. Unfortunately, our experi-
ment cannot access this high-speed regime due to limita-
tions in the torque-speed characteristic of our motor. We
also observe an intermediate scaling, MmL=A� �

1=2. This
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FIG. 4 (color online). Steady-state shapes of a rotating rod
from experimental measurements for � � 1:38 (), 4.25 (�),
5.91 (�) (before transition), and 164.63 (5) (after transition),
along with the shapes calculated from the nonlinear (solid line)
theory. The rod has L � 210 mm and � � 20�.
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scaling arises since in this subasymptotic regime, the de-
flection y� L��1=4, but the scale for bending of the rod is
still L and not ‘.

For large �, the deflection of the rod is significant even
for small �, and the linear theory is inaccurate. However,
the nonlinear Eqs. (2)–(5) are readily solved with shooting
methods [19]. The nonlinear theory gives a more accurate
prediction for the speed-torque relationship in the high-
speed regime where the linear and nonlinear theories differ
(Fig. 3). As � increases, the general appearance of the
torque-speed relationship remains unchanged although
both the critical torque and the jump in speed at the
transition increase (not shown here). Finally, for large �,
the linear scaling analysis presented above remains valid,
and the moment scales like �1=4 for �� 1.

Figure 4 shows the steady-state rod shapes for four
different values of �, comparing experimental data (sym-
bols) with the nonlinear theory (solid line). The agreement
between theory and experiment is good. Note that the y-z
projection shows how y�L� first increases with � and then
decreases, in accord with our intuitive argument.

We can calculate the thrust, or axial force, from the
shape of the rod using Fp � ẑ �

R
fds � �ẑ � F�0�. The

kinematic reversibility of Stokes flow implies that a rigid
rod rotating along the surface of a cone generates zero
propulsive thrust. For small �, the elastic rod deforms
slightly and generates little thrust. Above the critical
torque, as the helical shape develops, the thrust increases
abruptly (Fig. 5). Since the shape of an actuated elastic
filament cannot be decoupled from swimming kinematics
[20], it would be an interesting generalization of our work

to build an artificial swimmer driven by a rotating elastic
rod, tilted at the base to the rotation axis.
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FIG. 5 (color online). Theoretical calculation of the dimen-
sionless propulsion force Fp as a function of dimensionless Mm

for � � 20�, using the nonlinear equations for the ideal case of
zero gravity. The arrows denote the transition for ascending (")
and descending (#) torque.
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