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and Kagome Antiferromagnets: Applications to CuFeQO,
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We study the effect of spin-lattice coupling on triangular and kagome antiferromagnets and find that
even moderate couplings can induce complex collinear orders. On coupling classical Heisenberg spins on
the triangular lattice to Einstein phonons, a rich variety of phases emerge including the experimentally
observed four sublattice state and the five sublattice 1/5th plateau state seen in the magnetoelectric
material CuFeO,. Also, we predict magnetization plateaus at 1/3, 3/7, 1/2, 3/5, and 5/7 at these
couplings. Strong spin-lattice couplings induce a striped collinear state, seen in a-NaFeO, and MnBr,. On
the kagome lattice, moderate spin-lattice couplings induce collinear order, but an extensive degeneracy

remains.
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Frustrated magnets, in which classical ground states
have multiple accidental degeneracies, have been at the
focus of renewed attention. While much theoretical work
has focused on the lifting of this degeneracy by thermal or
quantum fluctuations (“‘order by disorder” [1]), alternate
mechanisms might dominate in real materials. One mecha-
nism that is always present is the coupling of magnetism to
the lattice (spin-phonon coupling). Such couplings lead to
new theoretical problems and can induce multiferroic be-
havior with potentially important applications [2]. Indeed,
the interaction between spin, lattice, and orbital degrees of
freedom is central to understanding correlated materials
[3]. Previous studies have highlighted the role of lattice
distortions in promoting valence bond physics (spin Pierels
effect) [4,5] in frustrated magnets. In the opposite limit of
large (semiclassical) spins, the lattice coupling induced
stabilization of collinear ground states in pyrochlore mag-
nets was emphasized [6]. Further selection of a unique
collinear ground by specific spin-phonon interactions
have also been proposed [7,8].

Here we will study the effect of spin-phonon interactions
on the ground states of the triangular and kagome magnets,
in the classical limit. In contrast to the previously studied
pyrochlore magnets, all ground states of the nearest neigh-
bor antiferromagnets on these lattices are noncollinear
(120°) configurations. We show that physically reasonable
values of spin-lattice coupling can induce collinear orders
with complex structure. Thus, even with full spin rotation
invariance, collinear ground states can arise on these latti-
ces. We believe this to be the origin of the puzzling col-
linear magnetism seen in triangular lattice magnets, such
as CuFeO, [9], and perhaps also «-NaFeO, [10], and
MnBr, [11]. In these materials with S = 5/2 filled shell
moments, magnetic anisotropy is likely to be (and in some
cases known to be) very small, and cannot be invoked to
explain the collinear order. Furthermore, we study the
precise pattern of the order induced within the Einstein
Site Phonon (ESP) model [8], which is parameterized by a
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single coupling constant. The zero temperature phase dia-
gram of the classical spin models are establish by combin-
ing analytic arguments with numerical calculations
(simulated annealing). On the triangular lattice, increasing
the spin-phonon coupling induces a transition from the
120° state to a collinear state with four sublattice zigzag
order (Z state). The phase diagram in a magnetic field is
remarkably complex, with magnetization plateaus at
1/5th, 1/3rd, 3/7th, 3/5th, 5/7th, and 1/2 of the total
magnetization appearing at these couplings.

Remarkably, in CuFeO,, [9] an extensively studied tri-
angular magnet, the Z state is observed at low tempera-
tures, which on application of a field yields a 1/5th
magnetization plateau with precisely the structure obtained
in our model. This was previously rather mysterious since
the only available models which captured such orders were
Ising Hamiltonians with large and very specific second and
third-neighbor interactions (J, = 0.45J,, J3 = 0.75J))
[12,13]. Such Ising models are unnatural given the nearly
isotropic magnetic susceptibility observed in the paramag-
netic state [14]. In contrast, our model is spin isotropic and
involves a single parameter —the spin-phonon coupling—
set at a physically reasonable value. Predictions for higher
magnetization plateaus and signatures of spin-phonon cou-
pling in this material are made. The magnetically induced
electrical polarization observed in this system is however
not captured by our simple model, pointing to the role of
other interactions.

On the kagome lattice too we find that beyond a critical
coupling, collinear ground states are obtained, but in con-
trast to the triangular lattice, the manifold of these states
has an extensive entropy. Only at larger couplings is there a
transition into a unique ground state. This may be of
relevance to the recently studied kagome staircase com-
pound, Mn;V,0Oq [15].

Spin-phonon model.—Spin-phonon couplings arise
from the dependence of the exchange coupling on separa-
tion between the magnetic ions J(r). Thus,
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where ii; is the displacement of site i and hence u;; =

(u; — uj) ¢;; is the change in length of the bond ij (¢;;

the unit vector from site i to j), the lattice constant is d and
a=dJ '9J/dr. Two types of phonon Hamiltonians,
Hi,5c0, have been proposed. First, the bond phonon model
of Penc et al. [6], where u;; are treated as independent
variables and Hpi.. = (K/ 2)z<, ]>u Integrating out the

phonons generates just the biquadratic term —bJ 3" ;,(S )

§j)2. (The phonon’s dynamics can be neglected if its
frequency is much larger than magnetic energy scales).
For large b, collinear states result, but the model is highly
degenerate and selection by quantum fluctuations may be
important. However, this model assumes that bond dis-
placements are independent, which is an oversimplification
for many lattices. Instead, here we turn to the second
model, the ESP model of Bergman et al. [8] which respects
the inevitable correlations between bond lengths and as-
sumes a dispersionless optical phonon branch, Hjc. =
(K/2d%)Y i3

More realistic phonon models with multiple branches
and acoustic phonons could generate complex longer-
range effective spin interactions. In the interests of sim-
plicity and generality we will restrict attention to the ESP
model. Integrating out the lattice displacement i; results in
the effective spin Hamiltonian:

Hgsp = [ZS S;— cSZZFZ} )
G

where S is the classical spin length, ¢ = a?JS5%/(2K) is a

dimensionless coupling and we have defined the dimen-

as Fi = ZjEnbrs. of i(Si ’
S 1);;/S*. We will sometimes use the scaled coupling J =
§2J. The spin-phonon interaction seeks to maximize the
force F. Note, the second term in Eqn. (2) generates
interactions involving three adjacent spins ¢é;; Jk(S
S j)(S it S k).

Triangular lattice.—In the following we will consider a
single triangular lattice sheet governed by the Hamiltonian
in Eqn. (2), i.e., with nearest neighbor antiferromagnetic
interactions and the spin-phonon term. We focus on the
zero temperature phase diagram, as a function of the single
parameter ¢ and subsequently in an applied magnetic field.
Since we are primarily interested in large spin (e.g., S =

sionless ‘“force” on site i

5/2), we focus on classical spins, where we can write S; =
S7;, where 7; is a unit vector. If, for a moment, we restrict
to only Ising states, 5,- = o5, this effective spin
Hamiltonian simplifies to an Ising model with nearest-,
second-, and third-neighbor coupling, J(1 — ¢), ¢J and ¢/,
respectively. However, in this model the second and third-
neighbor couplings are constrained to be strictly equal.

This might be a rationalization for the success of Ising
models with large second and third-neighbor couplings
used in previous work [12].

Consider the classical ground state on raising c¢. While at
¢ = 0 the the regular 120° pattern of O(3) spins on the
triangular lattice is realized, this is expected to survive to
finite ¢ as well. The ground state energy per site is Ey/J =
—3/2, and since the force vanishes in this state, it is
independent of c¢. While a full numerical solution is re-
quired (and provided below) for the phase diagram of this
model, we begin with analytic arguments which will be
confirmed by the numerics. Clearly, collinear states are
preferred for large ¢ since they give rise to the maximum
force. However, near the phase boundary with the 120°
states, the exchange J will presumably be important, and
hence we restrict attention to those collinear states that best
satisfy J. These are just the ground states of the triangular
lattice Ising antiferromagnet (TLIA) with nearest neighbor
exchange, with two (one) up and one (two) down spins per
triangle. The question of which configuration within this
manifold optimizes the force term can be rigorously an-
swered—it is the Z state. The proof is as follows. Using the
dimer representation of the TLIA states, where a dimer is
drawn orthogonal to each unsatisfied bond, and leads to a
hard core dimer configuration on the honeycomb lattice,
we see that the force on site i is determined by the dimer
configurations on the hexagon surrounding site i. The force
is | F;| = 2 if there is one dimer in the hexagon or two not-
opposite dimers; otherwise |F ;| = 0. The ground state
maximizes zlf 7. Hence it must have two dimers in every
hexagon (since on average there are two dimers per hexa-
gon, having a one dimer hexagon implies also a hexagon
with three dimers, which experiences no force).
Combining this with the condition that the two dimers
cannot be on opposite sides leads us uniquely to the Z state
shown in Fig. 1.

The full phase diagram is obtained using simulated
annealing on lattices with periodic boundary condition
and various sizes up to 10 X 10, and choosing the state
with lowest energy per site. Simulations on each size were
done by an exponential annealing schedule from 8J = 0.1
with a random initial state to 8J = 1000, with a total of
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FIG. 1 (color online). Zero-field phase diagram of the triangu-
lar lattice ESP model. On increasing the spin-phonon coupling c,
the 120° state is followed first by the zigzag Z state, then an
8 sublattice state and finally the stripe S state. Accidental
degeneracies (thick red ticks) only occur at the phase boundaries
¢ =1/6, 1/2. Solid blue (hollow red) circles are up (down)
spins.
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20000—40000 sweeps, the whole process was repeated
10 times to ensure stability of results. Site update with
Metropolis dynamics was used. While the algorithm does
not guarantee convergence to the ground state we never-
theless believe an accurate picture emerges since all ana-
Iytic expectations have been met, and we have not been
able to guess ground states with better energies.

The numerically obtained phase diagram in zero field
[i.e., Eq. (2)] is shown in Fig. 1. At ¢ = 1/8 the 120° state
is replaced by the four sublattice Z state, with alternating
zigzags of up and down spins and ground state energy per
spin E,/J = —1 — 4c. Beyond ¢ = 1/6, an 8 sublattice
state (E,/J = —10c) takes over. At ¢ = 1/2, the S state of
up-up-down-down stripes (E,/J = 1 — 12c) is found and
persists to large couplings. At the transition points ¢ = 1/6
and ¢ = 1/8, there are additional accidental degeneracies,
and quantum effects could be important in resolving these
[16].

The phase diagram in a magnetic field H, = —JhY ;n}
is remarkably rich (Fig. 2). For small ¢ where the 120°
state is realized, a highly degenerate set of states [17] well
known for the Heisenberg triangular antiferromagnet are
obtained. Since they all have vanishing force contributions,
the spin-phonon interaction does not split this degeneracy.
At larger values of ¢, the simulation shows a plethora of
plateau states with collinear order, which we briefly discuss
here and leave details to [16]. Interestingly the 1/5-plateau
with the pattern observed in CuFeO, occur for a wide range
of parameter c. For the parameter interval 0.14 < ¢ < 1/6
our model shows both the zigzag Z ground state at zero
field and the 1/5-plateau in magnetic field, as in CuFeO,.
Other prominent plateaus that occur in the range of ¢ where

7 3-sub.

FIG. 2 (color online). T = 0 phase diagram of the triangular
lattice ESP model. Dashed lines are continuous phase transitions,
solid lines are of first order. The fraction f label magnetization
plateaus, while ¢ — f are canted (noncollinear) states deriving
from them; cZ is the canted Z state. The ““3-sub’ states at small
¢ also occur in the pure Heisenberg model in a field.

the Z state appears are the 3/7th and 5/7th states with 7
site unit cell, a 1/2 magnetization plateau with an 8 site
unit cell and two distinct 3/5th plateaus with 5 sites per
unit cell. There is also a small region of 1/3 plateau, with a
12 site unit cell. The evolution of a plateau state with
increasing field can proceed in two ways— by a direct first
order jump to another plateau, or by a canting transition,
where the staggered moment direction moves away from
the field direction. For example, the evolution of the 1/5
plateau state on increasing the field is continuous, with a
gradual tilting of the staggered component away from the
field. This phase boundary can be calculated analytically
and agrees very well with the simulations. Such canted
states are of course absent in Ising model studies [12].
Other plateaus occur for larger ¢, which will be discussed
in detail elsewhere [16]. Amusingly, the most obvious 1/3
plateau consisting of up,up and down spins on the three
sublattices, does not occur (both our 1/3 plateau have 12
spin unit cells). The 1/9th plateau extends all the way
down to zero field occurs because of the accidental degen-
eracy at the point ¢ = 1/2 which includes configurations
with a maximum magnetization of 1/9th. Another conse-
quence of accidental degeneracies is the occurrence of
points in the phase diagram where four phases meet. For
example the 1/3, 7/15, 1/2, 3/7 plateaus meet at a point
where all four phases have exactly the same energy. These
points violate the Gibbs phase rule which is based precisely
on the assumption that such accidental degeneracies are
absent. Introducing other interactions, as well as thermal or
quantum fluctuations will resolve this degeneracy.
CuFeO, and other materials.—In CuFeO, the 4 sublat-
tice Z state is observed, which persists in a field upto B <
6 T. At higher fields B > 14 T, the 5 sublattice 1/5th
magnetization plateau is observed. We note that both these
states occur in our spin-phonon model when 0.14 < ¢ <
1/6. To estimate the spin-phonon coupling ¢ = a>J/2K in
CuFeO,, we use J =39 K (from the measured Weiss
constant [18]) and estimate &« ~ 7 and K ~ 10000 K [5],
which gives ¢ ~ 0.1 which is in the right ball park. The
fractional lattice displacement expected is |i;|/d =
2¢|F;|/a, which is about 5% for the Z state with these
parameters—although a larger value of «, arising from the
sensitivity of the nearly 90° Fe-O-Fe bond to distortion or
phonon anharmonicity can reduce it. While a distortion
with the right symmetry has been observed [19,20], future
scattering experiments should provide information regard-
ing its size. Also, phonon softening at the M points in the
Brillouin zone is expected just above the transition.
Although an isotropic spin model with magnetic order
cannot have a magnetization plateau centered at zero field,
even a very small magnetic anisotropy (e.g., an easy axis
anisotropy —DziSfi) can produce the observed zero mag-
netization plateau, since the plateau width AB scales as

AB x« ~/DJ. Even a 1% anisotropy D/J produces the right
plateau width [18]. The magnetization profile as a function
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FIG. 3 (color online). Predicted magnetization (m) curve for
CuFeO, with ¢ = 0.15 and 10% anisotropy with field parallel
(red) and perpendicular (blue) to the easy axis. Plateaus occur at
m=0, 1/5, 1/3, 3/7, 1/2, 3/5, 5/7, 1. One unit of field is
~12 T. Inset: the m = 1/5 state.

of field at ¢ = 0.15 with a somewhat larger 10% easy axis
anisotropy is shown in Fig. 3 (the field scale J/gugS is
~12 T) for fields parallel and perpendicular to the easy
axis (c¢ axis). These are in broad agreement with recent
measurements in fields below 40 T [20]. In particular, in
addition to the 1/5th plateau a 1/3rd plateau was observed
as in our simulations. However, we predict this to be a
complex 12 sublattice order, not the obvious three sublat-
tice state that was implicitly assumed. Resolving the struc-
ture of this and higher field plateaus will allow for a test of
our theory. Lastly, we note that the spiral ordered ferro-
electric phase observed in the field range 7<B <14 T
[14] is not produced here, indicating the importance of
other couplings, e.g., to the oxygen atoms mediating the
superexchange interaction. The up-up-down-down stripe
pattern for 1/2 < ¢ is the order observed in triangular
lattice compounds such as a-NaFeO,, [10] and MnBr,
[11]. Our model predicts a 1/9th and 1/3 plateaus in these
materials.

Kagome lattice.—The Einstein site phonon model on the
kagome is virtually identical to the triangular case, except
that the lower symmetry in this case allows for an aniso-
tropic confining potential on the atoms. For simplicity, we
assume an isotropic confining potential, but the main re-
sults are independent of this assumption.

Simulated annealing was applied to this model with
similar settings as the triangular case. The zero-field phase
diagram is presented in Fig. 4. For small ¢ we still get the
ground states of the pure Heisenberg model, which are
known to be extensively degenerate. For ¢ > 1/12 we get
collinear states, but in the range 1/12 < ¢ < 1/6 an exten-
sive degeneracy remains [21]. Even more interestingly, the
zero-field ground states can have arbitrary magnetization
ranging from —1/9 to 1/9 per site. Therefore, in this zero
temperature classical model, applying a small field will
immediately induce a 1/9-magnetization-plateau state. We
expect that thermal and/or quantum fluctuation can lift this
accidental degeneracy which is left for future work [16].
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FIG. 4 (color online). Zero-field phase diagram of the ESP
model on kagome lattice. Extensive degeneracy (marked red)
persists into 1/12 < ¢ < 1/6 where collinear states occur. A
representative configuration is shown in that case.

Further increasing ¢ beyond 1/6 pushes the system into a
unique collinear states (see Fig. 4).

In conclusion, our studies suggest that spin-phonon
couplings may be more widely relevant than previously
believed.
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