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When a current is applied to a type-I superconducting strip containing a narrow channel across its
width, magnetic flux spots nucleate at the edge and are then driven along the channel by the current. These
flux ‘‘drops’’ are reminiscent of water drops dripping from a faucet, a model system for studying low-
dimensional chaos. We use a novel high-bandwidth Hall probe to detect in real time the motion of
individual flux spots moving along the channel. Analyzing the time series consisting of the intervals
between successive flux drops, we find distinct regions of chaotic behavior characterized by positive
Lyapunov exponents, indicating that there is a close analogy between the dynamics of the superconducting
and water drop systems.
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Water dripping from a faucet is an everyday phenome-
non that illustrates many of the basic ideas of deterministic
chaos [1–3]. As the drip rate is increased, the intervals
between successive drops pass through regimes of peri-
odic, multiply-periodic, and chaotic behavior. In the cha-
otic regime, the drop dynamics is deterministic, in that the
next several drop intervals can be predicted from previous
intervals. There is, however, no long-term predictability of
the system; a small change in an earlier interval will lead to
an exponentially different set of future intervals. In a
simple model [4], a drop grows until it reaches a threshold
size; it then detaches and falls under the influence of
gravity. The remaining water oscillates as a drop begins
to grow again. A key element of this model is that the time
that any drop detaches is causally related to the time the
previous drop detached, via the ‘‘memory’’ of that previous
time stored in the oscillations. It is in this way that the time
interval between two drops is deterministically related to
earlier drop intervals. Yet, because of the delicacy of the
threshold condition, small changes in the state of an earlier
drop can have a profound effect on later ones.

Interestingly, very similar physics may govern the
current-driven nucleation, growth, and breakoff of mag-
netic flux spots or drops in type-I superconductors. When
current is passed along a thin-film strip of type-I material
containing a narrow channel across its width, flux begins to
enter the channel at its ends [5–9]. This region of flux
grows to some critical size and then breaks off as a flux
spot, containing�100 flux quanta �0, which is then driven
down the channel by the current. The analogy with water
drops is readily apparent, and suggests that in this super-
conducting dripping faucet chaotic dynamics might be
observable for flux drops as well.

In the experiment we report here, a high-bandwidth Hall
sensor is used to directly measure the passage of individual
flux spots along a channel formed in a lead strip. Just as for
water drops falling from a faucet, we find that the flux-spot
dynamics can be periodic, with single or multiple periods,
or nonperiodic, with a broad distribution of drop intervals.

Applying the tools of nonlinear time-series analysis to the
data, we find that these nonperiodic regimes are in fact
chaotic, characterized by positive Lyapunov exponents,
allowing the prediction of the drop sequence roughly five
drops into the future.

The sample geometry used is similar to that of Chimenti
et al. [5]. In a two-step process, a 1-�m-thick lead film is
first evaporated onto a sapphire substrate, leading to a
1-mm-wide strip bridged by a 3-�m-wide gap defined by
liftoff. Then a second lead strip, 4 �m thick and 160 �m
wide, is evaporated on top of the first. As shown schemati-
cally in Fig. 1(a), this results in a channel that is 3 �m
wide, 1 �m deep, and 160 �m long. The films are of high
quality, with Tc � 7:2 K and R300 K=R10 K > 500.

Hall sensors, with active areas of �1:5� 1:5 �m, were
fabricated from high-quality GaAs=AlGaAs heterostruc-
tures. The Hall voltage was detected using a cooled junc-
tion field-effect transistor preamplifier mounted near the
Hall probe. At room temperature, the Hall signal was
further amplified and then passed through an antialiasing
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FIG. 1. (a) Schematic of the lead sample, showing the narrow
channel that confines flux spots. Spots of opposite sign nucleate
at each end and move towards the middle of the channel, where
they annihilate. (b) Scanning Hall probe image of the sample for
I > Ic. The low bandwidth of the scanning mode leads to a
blurred image of the moving spots.
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filter with a bandwidth of 5 MHz. The Hall probes were
mounted on a scanning head that allowed the probe to be
moved over any point of the channel, or to be scanned over
the surface for magnetic imaging.

In dripping faucet experiments, the drop dynamics are
typically investigated as a function of the average drip rate,
a rate usually controlled by varying the pressure behind the
nozzle. In our experiment, we can vary the flux-spot nu-
cleation rate by changing the external current through the
strip. Figure 1(b) shows a magnetic image, taken with the
Hall probe in scanning mode, of the strip with a current
flowing along it. The bright band along the upper edge of
the sample, and the dark band along its lower edge, reflect
the magnetic field due to this applied current. When the
current exceeds a critical value Ic, this magnetic field
becomes large enough to allow the nucleation and subse-
quent breakoff of flux drops from the channel ends.
Because the field is oppositely directed at the two edges,
the flux drops from each edge have opposite signs as well.
As Fig. 1(b) shows, these drops of opposite sign are then
driven by the current toward the middle of the channel,
where they annihilate. Only one row of spots can nucleate
in the 3-�m-wide channel, so that the spot motion is
essentially one dimensional.

In order to detect the motion of individual flux spots in
real time, the Hall probe was held fixed over one point of
the channel, about 40 �m (or 1=4 of its length) from the
channel’s end. Here, we are well away from the very edge
where the flux spots nucleate and break off, so that we
observe the dynamics of only well-formed flux spots. At
the same time, this position is far from the annihilation
point, so that we avoid the complicating effects of the
annihilation process.

The results reported here were obtained in zero applied
field at a temperature of 4.5 K. At temperatures close to Tc,
the magnetic field of the flux spots is weak and difficult to
observe; at low temperatures the critical current becomes
impracticably large. The results at other temperatures, or
for other samples, look qualitatively similar, but differ in
their details. At 4.5 K, the current was swept from the
critical current Ic � 497 mA to a threshold current It �
590 mA at which continuous flux flow occurred in the
channel. The Hall probe signal was digitized at a rate of
107 samples=s, with a total of 16� 106 points taken in one
run.

Figure 2 shows short segments of an entire data run. The
signal consists of well-defined Hall voltage pulses as each
flux spot passes beneath the probe. In Fig. 2(a), taken at a
current somewhat above the critical current, we see a train
of pulses with two distinct periods. As the current is
increased, the behavior changes to that shown in
Fig. 2(b). Here we observe a complex train of larger and
smaller pulses, with no evident periodicity. As the current
is swept through this low-current region I, the behavior
changes alternately between the periodic-type behavior
seen in Fig. 2(a) and the more complex behavior in
Fig. 2(b). A fundamental question to be addressed concerns

the nature of the complex dynamical behavior in Fig. 2(b).
Are the pulse times and sizes only the result of some
stochastic process, or is the underlying dynamics in fact
deterministic?

As the current is further increased, the behavior changes
suddenly to the purely period-one behavior shown in
Fig. 2(c). We call the fairly wide range of currents over
which this periodic behavior is observed region II. Finally,
at the highest currents, the flux-flow dynamics enters
region III. As shown in Fig. 2(d), the Hall voltage consists
of fairly flat-topped pulses interspersed with occasional
short pulses. We interpret this pattern as representing elon-
gated flux ‘‘sausages’’ interspersed with more circular flux
spots. As the current is further increased, region III ends
when the flux spots merge and continuous flux flow occurs
in the channel.

One run of 16� 106 data points contains some 600 000
pulses representing a variety of dynamical regimes. In
order to analyze this large data set we need a way to
characterize the data in a concise way. For water drop
experiments a commonly used measure is the time interval
�t between successive drops. Each drop interval can then
be plotted versus the driving parameter, such as the water
pressure at the nozzle. We have found it useful to plot our
data in a similar way. The time at which a flux ‘‘drop’’
occurs is determined by when the voltage crosses a fixed
threshold. The resulting bifurcation diagram is shown in
Fig. 3(a), in which we plot the time intervals �t between
the 638 848 individual drops observed during the run. The
gray-scale intensity of the image is proportional to the
probability of finding, at a given driving current, a particu-
lar value of �t. The three regions I–III previously de-
scribed are readily apparent.

Region I is characterized by regions of singly- and
multiply-periodic behavior interspersed with more com-
plex regions distinguished by broad distributions of ‘‘drip-
ping’’ time intervals. We will discuss this interesting region
in more detail below. In region II, purely periodic behavior
is observed, as indicated by the single �t observed at any
given current. As the current is increased, this period
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FIG. 2. Sequences of voltage pulses recorded by the Hall probe
at four values of the current �I � I � Ic: (a) 12.4 mA;
(b) 15.9 mA; (c) 30.1 mA; (d) 81.8 mA. The values to the right
are the field scale for each.
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decreases, indicating higher-frequency flux nucleation.
Finally, at high currents, region III emerges. This region
is similar in appearance to region I, with some periodic
sections mixed with more complex regimes. (At the end of
region II there is a short section with continuous flux flow.)

In Fig. 3(b) is shown an enlarged view of the most
interesting section of region I. At this level of detail it is
clear, for example, that the pulse train in Fig. 2(a) is not
truly periodic. First, the shorter drop interval observed in
Fig. 2(a) can be seen to actually consist of two possible
intervals of 2.11 and 2:25 �s. Second, the longer time
interval of about 4:2 �s is broadened by about 0:16 �s.
At the current corresponding to the pulse train shown in
Fig. 2(b), a very broad range of drop intervals is apparent,
reflecting the multitude of pulse intervals observed in
Fig. 2(b). Other regions in Fig. 3(b) also exhibit multiple
periodicity, quasiperiodicity, and broad distributions of �t
with no evident periodicity.

We have discussed how the dynamics of a real dripping
faucet is governed by highly nonlinear processes. Our
qualitative analysis of our superconducting dripping faucet
suggests that nonlinear processes are at play here as well.
And, since flux drops represent a driven, dissipative system
it seems possible that the system’s behavior is determined
by a chaotic attractor rather than just being a stochastic
manifestation of flux-spot nucleation. To investigate this
we have analyzed the sequence of 638 847 drop intervals
using the TISEAN [10] package for nonlinear time-series
analysis, calculating specific quantities such as the largest
Lyapunov exponent and the correlation fractal dimension.
In order to make such an analysis, stationary sequences—
those in which the underlying governing dynamics is un-
changing—should be used. We have chosen the finite
sequences 1–3 indicated in Fig. 3(b) as approxi-
mations of true stationary sequences. These sequences
contain 4000, 2000, and 3000 drop intervals, respectively.

Our analysis is performed in the phase space con-
structed using the method of time delay reconstruc-
tion [11], in which the nth point in an m-dimensional
space is represented by the sequence of time intervals

(�tn;�tn�1; . . . ;�tn�m). A nonlinear noise reduction al-
gorithm was applied to the data before the analysis.

We begin our time-series analysis by computing
Lyapunov exponents, which characterize the evolution of
the separation between two nearby trajectories in phase
space. If the dynamics is governed by deterministic chaos
then nearby trajectories diverge exponentially and the larg-
est Lyapunov exponent is positive. We have used the
algorithm of Kantz [10,12] to study this divergence. For
sequence 1 at the left of Fig. 4, the average separation
between points in phase space, starting with an average
separation of about 0.008 ( ln�0:008� � �4:8), increases
linearly on this log-lin graph, so that there is indeed an
exponential divergence of nearby trajectories. This linear
increase extends over about 4–5 consecutive steps, indi-
cating that weak correlations still exist between a given
drop interval and one four or five drops later. Similar
results hold for sequences 2 and 3. At large enough time
steps the originally nearby points become completely un-
correlated, and the curve begins to approach the size of the
attractor. The curves with unfilled markers in Fig. 4 are
calculated for surrogate data obtained by phase-
randomizing the data [13] from sequences 1 and 3. In
this case, the slope of the average expansion rate is almost
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FIG. 4. Divergences of trajectories from sequences 1–3 of
Fig. 3. The graphs for sequences 2 and 3 are offset horizontally
by 7 and 14 units, respectively. The embedding dimension for
this analysis was m � 5.
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FIG. 3. Bifurcation diagram for dripping time intervals. (a) Drop intervals over the entire range of currents for which pulses were
observed. Arrows a–d denote the currents at which the segments of pulses shown in Fig. 2 were taken. (b) An expanded section of
regions I and II. Short sequences 1–3 are analyzed in more detail using the tools of nonlinear analysis.
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vertical: Any two points are completely uncorrelated, and
their average distance immediately jumps to the average
size of the (randomized) attractor. This clear distinction
between the original and the surrogate data proves that our
dynamics is incompatible with a linear stochastic process,
but instead is well-described by a nonlinear deterministic
process.

The correlation dimension [14] quantifies the self-
similarity exhibited by the attractor’s structure in phase
space. By counting the points inside of a ball which is
moved along the phase-space trajectory we obtain the
correlation sum C�"� as a function of the ball radius ". In
Fig. 5 we show the phase-space distance dependence of the
correlation sum for sequence 1, calculated for different
embedding dimensions m. The linear scaling region be-
tween 0.034 and 0:9 �s is due to the points in the phase
space that are arranged into structures with internal self-
similar organization. The inset to Fig. 5 shows the
embedding-dimension dependence of the slope of the cor-
relation sum’s linear region. As the embedding-dimension
m is increased, the scaling coefficient approaches the
correlation dimension D � 1:0 of the attractor formed by
sequence 1. However, in the randomized surrogate data of
sequence 1, the correlation sum describes only a stochastic
distribution of points in phase space, and the scaling coef-
ficient shows no asymptotic behavior.

We have shown that the dynamics of our superconduct-
ing dripping faucet is governed by nonlinear dynamics,
leading to chaotic behavior very similar to that observed in
an ordinary dripping faucet. The question remains as to
what extent the two systems share an underlying physical
origin for this behavior. A key element of water drop
dynamics is the memory that each drop has of its prede-
cessors, stored in the oscillations of the drop itself. But flux
motion in a superconductor is heavily overdamped, and so
no such oscillations are expected. However, unlike water
drops, flux spots interact, via long-range magnetic [15]
forces. Thus an incipient spot’s development is mediated

by interactions with the spot that just broke off, and even
with spots further down the channel. In this way the time
intervals between drops is a deterministic—but evidently
highly nonlinear—function of previous drops.

Although no general theory exists for calculating this
nucleation, growth, and breakoff mechanism, the remarks
just given are enough to envision the kinds of correlations
that such a theory would yield. At low driving currents,
drops are well-separated and, experimentally, their non-
linear interactions are evidently such that the breakoff time
of the next drop is sensitively dependent on the position
and size of previous drops. This leads to the chaotic
behavior observed in region I. As the current is further
increased, the drop intervals shrink and the interactions
become stronger. It appears that in this regime the inter-
actions act to ‘‘lock’’ together successive drops in a highly
periodic way, leading to our observed region II. At the tail
end of region II the drops are so closely spaced that they
merge into continuous flux flow. At the highest currents,
this continuous flow begins to break up again, but as
Fig. 2(d) showed, the signal consists regions of flux sepa-
rated by short segments of zero flux. We can think of these
short segments as negative-going pulses moving in a ‘‘sea’’
of continuous positive flux, in which case the dynamics
should be similar to that in region I, as is in fact observed.
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FIG. 5. The correlation sum computed for sequence 1. For
small � the sum is dominated by noise; at large values the finite
size of the attractor becomes important. Over about 1.4 decades,
however, scaling is observed. (Inset) Slopes of the correlation
sum as measured in the scaling region.
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