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We calculate exactly the vacuum polarization charge density in the field of a subcritical Coulomb
impurity, Zjej=r, in graphene. Our analysis is based on the exact electron Green’s function, obtained by
using the operator method, and leads to results that are exact in the parameter Z�, where � is the ‘‘fine-
structure constant’’ of graphene. Taking into account also electron-electron interactions in the Hartree
approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an
effective charge Zeff , determined by the localized induced charge. We find that an impurity with bare
charge Z � 1 remains subcritical, Zeff�< 1=2, for any �, while impurities with Z � 2, 3 and higher can
become supercritical at certain values of �.
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It has been known for a long time that the single electron
dynamics in a monolayer of graphite (graphene) is de-
scribed by a massless two-component Dirac equation [1–
3]. A surge of interest in the problem was caused by the
recent successful fabrication of graphene [4] and measure-
ments of transport properties [5–10], including an uncon-
ventional form of the quantum Hall effect. Because of the
Coulomb interaction between electrons, graphene repre-
sents a peculiar two-dimensional (2D) version of mass-
less quantum electrodynamics (QED) [2]. It appears to be
much simpler than conventional QED because the interac-
tion is described by the instantaneous 1=r Coulomb’s law.
On the other hand the Fermi velocity vF � 106 m=s �
c=300 (c is the velocity of light), and therefore the ‘‘fine-
structure constant’’ � � e2=@vF � 1, leading to a strong-
coupling version of QED. Below we set @ � vF � 1.
Screening of a charged nucleus due to vacuum polarization
is an effect of fundamental importance in QED. This
problem was investigated in detail both in the subcritical
and supercritical regimes [11–14]. The problem of charged
impurity screening in graphene, which also can be treated
in terms of vacuum polarization, has recently received a lot
of attention [15–23], due to the importance of the problem
for transport properties involving charged impurities, as
well as for our general understanding of the theory of
graphene.

To leading order in the weak coupling expansion, Z��
1, the induced charge is negative and localized at the
impurity position, �ind � �jej

�
2 �Z����r�, which leads to

screening of the impurity potential [20–22,24]. We denote
by Zjej the impurity charge, and e � �jej is the effective
electron charge; from now on we refer to Z as the impurity
charge with the understanding that it is measured in units of
jej. In graphene, the strong-coupling problem Z�� 1 was
recently addressed [20], and it was argued that the super-
critical regime occurs for Z� > 1=2, where a 1=r2 tail
appears in the induced charge density, while in the sub-
critical regime Z� < 1=2, the induced charge is always

localized at the impurity site. Analytical results were also
supplemented by numerical lattice calculations [21], lead-
ing to similar conclusions. The induced charge behavior
for small Z� was first emphasized in a different context in
Ref. [24], and it is in agreement with a recent perturbative
calculation of nonlinear vacuum polarization at order
�Z��3 [22]. It was also pointed out [22] that a power law
tail can appear even in the subcritical regime due to inter-
action effects (at order Z�2).

In the present Letter we investigate analytically the
induced charge density in graphene in the subcritical re-
gime. We use the method of calculation suggested in
Ref. [13], where the induced charge density in a strong
Coulomb field was obtained in coordinate space in three-
dimensional (3D) QED. We express the induced charge
density via the exact Green’s function in a Coulomb field,
calculated within the operator technique [25]. Our main
result is an exact expression for the polarization charge,
nonperturbative in the parameter Z�, and we explore its
physical consequences. The exact result allows us to de-
termine the effective impurity charge Zeff in a self-
consistent way. Perhaps most surprisingly, we find that an
impurity with bare charge Z � 1 can never become super-
critical, i.e., Zeff�< 1=2. In spite of this, screening can be
very substantial, i.e., one can have Zeff � 1 for large
enough �.

Electron Green’s function in a Coulomb field.—It is
convenient, for technical reasons, to introduce a small
‘‘electron mass’’ M which we set to zero at the end of
our calculations. This will allow us to avoid some difficul-
ties which appear in the calculation of the induced charge
in massless QED [12], and will serve the renormalization
purpose. Physically the mass describes a small energy
splitting between carbon atoms in the unit cell. We will
consider only the half-filled case of graphene, i.e., we set
the chemical potential to zero.

The electron Green’s function G�r; r0j�� in a Coulomb
field satisfies the two-component equation

PRL 100, 076803 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

0031-9007=08=100(7)=076803(4) 076803-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.076803


 

�
��

Z�
r
� �� 	 p� � �3M

�
G�r; r0j�� � ��r� r0�: (1)

Here � � ��1; �2�, and �1;2;3 are the Pauli matrices; p � �px; py� is the momentum operator. Following Ref. [25] we
represent the solution of Eq. (1) in the form

 G�r; r0j�� � �i
�
��

Z�
r
� �� 	 p� � �3M

�Z 1
0
dse2is�Z� exp

�
is
�
r�r �

K̂
r
� r��2 �M2�

�� ����
r
r0

r
��r� r0������0�;

(2)

where �r is the radial part of the Laplace operator and K̂ � @2=@�2 � �Z��2 � iZ��� 	 n�, n � r=r. Then we express
�����0� via the projectors P� that are eigenfunctions of the operator K̂, K̂P� � ��2P�:

 �����0� �
X
�

P���;�
0�; � � 	
 1=2; 	 �

������������������������
ß2 � �Z��2

q
; ß � m� 1=2; (3)

and m � 0; 1; 2; . . . . The explicit form of P� for � � 	� 1
2 is

 P���;�0� �
1

4�	
P11 P12

P21 P22

� �
; P11 � �	� ß�eim����

0� � �	� ß�e�i�m�1�����0�;

P12 � �iZ��e�i�m�1��eim�
0
� eim�e�i�m�1��0 �; P11 � P�22; P12 � �P�21:

(4)

The projector with eigenvalue � � 	� 1=2 is obtained from (4) by replacing 	! �	. After substitution of the expansion
(3) into Eq. (2), the problem is reduced to calculation of the action of the operator exp��2is�A1 � k2 A3

2 
� on
���r
r0

p
��r� r0�.

Here k2 � M2 � �2 and the operators are defined as: A1 �
1
2 ��

@
@r r

@
@r�

�2

r �, A3 � r. Along with A2 � �i�r@=@r� 1=2�,
these operators generate anO�2; 1� algebra, which was considered in Ref. [25] in relation to the 3D Green’s function for the
Dirac equation of an electron in a Coulomb field. Therefore we can directly use the operator transformation of that work.
As a result we find the following integral representation for the solution of Eq. (1):

 G�r;r0j����
�
��

Z�
r
��� 	p���3M

�X
�

P���;�
0�
Z 1

0
ds

k
sin�ks�

e2is�Z�exp�ik�r�r0�cot�ks�� i��
J2�

�
2k

������
rr0
p

sin�ks�

�
: (5)

Here J
�x� is the Bessel function.
Induced charge.—The induced charge density in the

vacuum is

 �ind�r� � �ieN
Z
C

d�
2�

TrfG�r; rj��g; (6)

whereG is the Green’s function calculated above, andN �
4 reflects the spin and valley degeneracies. The contour of
integration C goes below the real axis in the left half-plane
and above the real axis in the right half-plane of the com-
plex � plane. Taking into account the analytical properties
of the Green’s function, the contour of integration with re-
spect to � can be deformed to coincide with the imaginary
axis. The integration contour with respect to s in Eq. (5)
can then also be rotated to coincide with the imaginary axis
so that it extends from zero to �i1 for Im� > 0, and from
zero to i1 for Im� < 0. After these transformations and
obvious change of variables, we obtain

 �ind�r� � �N
e

�2r

�
X1
m�0

Z 1
0

Z 1
0
d�dse�y coshs

�
2Z� cos��s�

� cothsI2	�y� � sin��s�
�
k
yI02	�y�

�
; (7)

where k �
������������������
�2 �M2
p

, y � 2rk= sinhs, � � 2Z��=k,
I	�x� is the modified Bessel function of the first kind, and
I02	 � dI2	�y�=dy. We note that �ind�r�, Eq. (7), is an odd
function of Z�.

In fact, the expression (7) is not well defined and the
answer depends on the order of integration over � and s. To
overcome this problem we follow the usual procedure of
QED. We perform the regularization of the integrals in-
troducing a finite upper limit of integration for �, and a
lower limit of integration for s. Then we carry out the
renormalization using the obvious physical requirement
of zero total induced charge. We can satisfy this require-
ment due to the nonzero mass M because the induced
charge density diminishes rapidly at distances r� 1=M.
After renormalization the result is independent of the cut-
off parameters and the order of integration. It is technically
convenient to do the renormalization in momentum space.
All details of calculations which we need to perform are
similar to those described in detail in Ref. [13] for the
problem of 3D vacuum polarization in QED. Finally, we
obtain the renormalized induced charge density in momen-
tum representation �Rind�q=M�. The leading term of the
asymptotics of this function at M ! 0 (or q=M ! 1) is
a constant, Qind. Therefore the induced charge density in
coordinate space has the form
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 �ind�r� � Qind��r� � �distr: (8)

For the induced charge Qind we find
 

Qind � eN
�
�
8
Z����Z��

�
� �jejA�Z��;

��Z�� �
2

�

X1
m�0

Im
�

ln��	� iZ�� �
1

2
ln�	� iZ��

� �	� iZ�� �	� iZ�� �
iZ�
2ß
� iZ�ß 0�ß�
;

(9)

where ��x� is the gamma function and  �x� �
d ln��x�=dx. The induced charge Qind is negative [the
function A�Z�� is positive, see below]. The distributed
charge density �distr in Eq. (8) is positive and at distances
r� 1=M, �distr / M2 ln�1=Mr�. The density vanishes in
the limit M ! 0, however the total distributed charge is
�Qind. We comment that in conventional 3D QED, the
induced charge density also consists of local and distrib-
uted parts. In that case the distributed density �distr /
�jejZ�=r3 at r� 1=M [26]. Interestingly, the signs of
the local and distributed charges in 3D QED are different
from those in Eq. (8). The difference is in the leading
(linear in Z�) contribution, while the signs of the next-
to-leading contributions (nonlinear vacuum polarization)
are the same in both cases. Physically this difference is
related to the fact that the effective charge e2 is renormal-
ized (increases at short distances) in conventional QED,
while in graphene the charge is not renormalized [2].

The series expansion of the function A�Z�� �
��=2�Z�� 4��Z��, for small Z� reads

 A�Z�� �
�
2
�Z�� � 0:783�Z��3 � 1:398�Z��5 � . . . :

(10)

The first term of the expansion in Eq. (10) reflects the linear
one-loop polarization contribution [20,22]. The coefficient
of the �Z��3 term was also found recently in perturbation
theory [22].

The coefficients in the nonlinear terms are not small and
grow as the order increases; this is in contrast with con-
ventional QED where they are very small and decrease
rapidly [12]. The exact function A�Z�� is shown in Fig. 1.
For Z� > 0:3 our exact result starts to deviate substantially
from the linear order and this deviation is particularly
strong as the critical value Z� � 1=2 is approached. The
exact A�Z�� behavior is also stronger than the one found in
a recent numerical calculation [20], which also exhibits
lattice size dependence. Around the critical value Z��
1=2 the function A�Z�� has the following expansion

 A�Z���1:12–1:19

���������������
1

2
�Z�

s
�0:29

�
1

2
�Z�

�
� . . . (11)

Notice that the induced charge Qind � �jejA< 0 has a
screening sign, leading to a decrease of the effective im-

purity charge: Zeff � Z� A�Z��. In fact complete screen-
ing seems possible for Z � 1 and � � 1=2, where
Zeff � 0. However we will show that the self-consistent
treatment of the problem (within the Hartree approxima-
tion) can drastically change this behavior.

Self-consistent screening.—Since the induced charge is
fully concentrated at the origin, one can easily take into
account electron-electron interactions in the Hartree ap-
proximation. The Hartree contribution is expected to domi-
nate over the Fock (exchange) contribution for N � 1
(N � 4, from the spin and valley degeneracy in graphene).
To find the effective charge Zeff in the Hartree approxima-
tion, it is sufficient to solve the following self-consistent
equation:

 Zeff� � Z�� �A�Zeff��: (12)

If one uses the function A�Z�� � A�1� � ��Z��=2 calcu-
lated in the one-loop approximation, then this equation is
equivalent to the usual random phase approximation
(RPA). However, since the exact A�Z�� accounts for all
orders in Z�, Eq. (12) is more accurate than the RPA. In
particular, for the case Z � 1, the self-consistent RPA and
the full nonlinear theory lead to qualitatively different
results (see below).

The solution Zeff of Eq. (12) is a function of Z and �.
The function Zeff� versus Z� is shown in Fig. 2 for differ-
ent values of the bare charge Z. An impurity with charge
Z � 1 represents the most important practical case.
Interestingly, the impurity with Z � 1 remains subcritical
for all values of �, i.e., Zeff�< 1=2. The subcritical be-
havior is enforced by the strongly nonlinear variation of
A�Z��, found in our exact calculation. Notice that the RPA
alone would predict a transition to a supercritical regime at
� � 2:25. Impurities with Z � 2 and higher can become
critical even in the exact theory. For Z � 2, 3 the critical
points are �Z�2

c � 0:568 and �Z�3
c � 0:266, as shown in

Fig. 2. The present technique is not applicable in the
supercritical regime, although we expect (see below) that
Zeff� will continue to grow continuously and slowly for
� � �c.
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FIG. 1. The induced charge Qind=e � A as a function of Z�.
The solid line is the exact result from Eq. (9) and the dashed line
is the one-loop result A�1� � ��Z��=2.
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Even though the supercritical regime is never reached
for Z � 1, the screening is very substantial, as shown in the
inset of Fig. 2. For example, for � � 0:5, Z � 1, we find
Zeff=Z � 0:55. In the case Z � 2, the effective charge Zeff

cannot be computed by our technique beyond Z�c �
1:136, when the impurity becomes supercritical. The ratio
Zeff=Z, where Zeff is defined as the effective point charge,
will most likely continue to decrease continuously as a
function of Z� beyond the critical point. This is expected
because the relevant physics in the supercritical regime
occurs at large length-scales [14,20], and thus the local
behavior is presumably not strongly affected. It is well
known from conventional QED that the supercritical prob-
lem requires a different technique [14], and therefore we
leave this problem for a separate study.

The Z � 1 case is the most relevant experimentally,
since alkali atoms, such as potassium [10], typically serve
as charged scatterers in graphene. For graphene on SiO2

substrate with typical dielectric constant " � 4, the value
of � is � � 0:9 (using e2 ! 2e2=�1� "�). For such large
� the vacuum polarization effect is very strong and could
be important for interpretation of experiments [10].

In the present work we have considered half-filled gra-
phene, exactly at the Dirac point (zero Fermi energy).
However our results are also applicable for a finite small
Fermi energy, and both cases are relevant experimentally
[3]. The main observation is that the induced charge den-
sity is proportional to a �-function, meaning that it is
localized within one lattice spacing. As long as the
Thomas-Fermi screening length, � / ��kF�

�1 �
vF=���F�, is large compared to the lattice spacing, the
finite doping does not influence the short-range physics
considered here. (On the other hand the Coulomb potential
is affected at large distances, r * �, where it decreases
faster than 1=r.)

To summarize, we have presented an exact solution of
the Coulomb impurity screening problem in graphene in

the subcritical regime. The explicit result for the induced
vacuum polarization charge, Eq. (9), is valid to all orders in
the potential strength Z�. The exact solution, when com-
bined with the Hartree approximation, leads to a self-
consistent solution of the impurity problem. An impurity
with charge Z � 1 is found to be always in the subcritical
regime, where the induced charge is localized at the im-
purity site. In this regime vacuum polarization screening is
very strong and weakens substantially the impurity poten-
tial. However, impurities with Z � 2, 3 and higher can
become supercritical.
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FIG. 2 (color online). The effective coupling Zeff� from
Eq. (12) as a function of Z� for Z � 1 (black line), Z � 2
(red line), and Z � 3 (blue line). For comparison, the RPA result
is also shown for Z � 1 (dashed line). Inset: Reduction of the
impurity effective charge relative to its initial value, Zeff=Z.
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