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We use the T-matrix approximation to analyze the effect of a localized impurity on the local density of
states in monolayer and bilayer graphene. For monolayer graphene the Friedel oscillations generated by
intranodal scattering obey an inverse-square law, while the internodal ones obey an inverse law. In the
Fourier transform this translates into a filled circle of high intensity in the center of the Brillouin zone, and
empty circular contours around its corners. For bilayer graphene both types of oscillations obey an inverse
law.
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Graphene has been studied extensively in recent years.
Its most fascinating aspect is the existence of linearly
dispersing gapless excitations in the vicinity of the Dirac
points. This gives rise to very interesting electronic prop-
erties such as Friedel oscillations in the local density of
states at low energy, which decay as 1=r2 [1,2] instead of
the usual 1=r characteristic to two-dimensional systems
[3,4]. It is very important to understand well the physics of
impurity scattering in graphene, by studying, for example,
the local density of states (LDOS) in the presence of
single-impurity scattering [1–3,5]. Comparison with ex-
periments can provide information about graphene’s fun-
damental physics, and about the nature of the impurities.

In this Letter we analyze the Fourier transform of the
density of states measurable by Fourier transform scanning
tunneling spectroscopy (FTSTS). Such measurements have
recently been developed for graphene [6], as well as for
other two-dimensional materials such as ErSi2 [7] and the
cuprates [8].

Our first observation is that the FTSTS spectra can be
used to distinguish between monolayer and bilayer gra-
phene. In particular, for monolayer graphene with a local-
ized (delta-function) impurity potential, the Friedel
oscillations generated by intranodal scattering decay as
1=r2 at low STM bias, consistent with previous analysis
[1,2]. In the FTSTS spectra this is manifested by a filled
circle of high intensity in the center of the Brillouin zone
(BZ), with a radius proportional to the STM bias. On the
other hand, the Friedel oscillations generated by the scat-
tering of quasiparticles between different Dirac points
decay as 1=r. In the FTSTS spectra these oscillations are
translated into circular contours of high intensity centered
around the corners of the BZ and around sites of the
reciprocal lattice. Because of the form of the underlying
Hamiltonian, the distribution of intensity on some of these
circles is not rotationally invariant.

For the bilayer system, at low energy the oscillations
due to both intranodal and internodal scattering have a
1=r dependence, corresponding to circular lines of
high intensity close to center and the corners of the BZ,

and around the sites of the reciprocal lattice. At higher
energies the splitting of the bands for the bilayer sample is
also observable in the FTSTS spectra.

We also note that the FTSTS spectra can distinguish
between different types of impurities. For example, for the
case of a screened-charge impurity, the effect of internodal
scattering is greatly reduced compared to the effect of
intranodal scattering. This gives a clear signature in the
FTSTS spectra which can be observed in an experiment.

Our last observation is that the FTSTS spectra, be-
sides providing information about the band structure of
graphene, can also give insight into the underlying
Hamiltonian. In particular, the shift of the decay of the
Friedel oscillations from 1=r to 1=r2, and the rotational
asymmetry of some of the high-intensity spots, are strongly
dependent on the peculiar form of the tight-binding
Hamiltonian, and cannot be deduced solely from band-
structure arguments.

The tight-binding Hamiltonian for monolayer graphene
is

 H �
Z
d2 ~k�ay~k b ~kf�

~k� � H:c:�; (1)

where the operators ay, by correspond to creating electrons
on the sublattice A and B, respectively, and f� ~k� �

�t
P3
j�1 exp�i ~k � ~aj�. Here ~a1 � a�

���
3
p
x̂� ŷ�=2, ~a2 �

a��
���
3
p
x̂� ŷ�=2, ~a3 � �aŷ, t is the nearest-neighbor hop-

ping amplitude, and a is the spacing between two adjacent
carbon atoms, which we are setting to 1.

We will use this form of the Hamiltonian when perform-
ing our numerical analysis of the FTSTS spectra. However,
it is useful to expand the Hamiltonian close to the corners
of the BZ, which we also denote as nodes or ‘‘Dirac
points,’’ and use the linearized form to solve the problem
analytically at low energies. The momenta of the six
corners of the Brillouin zone are given by ~K1;2 �

�	4�=�3
���
3
p
�; 0�, ~K3;4 � �	2�=�3

���
3
p
�; 2�=3�, ~K5;6 �

�	2�=�3
���
3
p
�;�2�=3�. Close to each corner, m, of the

BZ we can write f� ~q� ~Km� 
 ~�m� ~q� � vm ~q � ~Jm,
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where ~q denotes the distance from the respective corner.
Also v1;2 � 3t=2 � v, v3;4 � v exp��i�=3�, v5;6 �

v exp�i�=3� and ~J1;2 � �	1;�i�, ~J3;4 � ~J5;6 � �	1; i�.
The corresponding Green’s function, G� ~k; !�, derived

from the tight-binding Hamiltonian in Eq. (1) can be ex-
panded at low energy around the six nodes (denoted m),
and in the 2� 2 (A, B) sublattice basis can be written as

 G � ~k;!�
Gm� ~k;!��
1

!2�j ~�m� ~k�j
2

!� i� ~�m� ~k�
~��m� ~k� !� i�

 !
;

(2)

where � is the quasiparticle inverse lifetime. The Fourier
transform of the linearized Green’s function is given by

 Gm�~r; !� / !
H�1�0 �z� i�m� ~r�H

�1�
1 �z�

i��m�~r�H
�1�
1 �z� H�1�0 �z�

 !
; (3)

where z  !r=v, H�1�0;1�r� are Hankel functions, r � j ~rj,
and �m� ~r� � vm ~r � ~Jm=�vr�.

We first focus on a delta-function impurity localized on
an atom belonging to sublattice A. In the (A, B) basis the
impurity potential matrix V has only one nonzero compo-
nent V11 � u. We start with a T-matrix study [3,9] of the
full Hamiltonian presented in Eq. (1), and we analyze our
results numerically for various energies. The resulting
FTSTS spectra (corresponding to the real part of the
Fourier transform of the LDOS) are plotted in Fig. 1.
There are several interesting features that should be noted.
First, there are regions of high intensity in the FTSTS
spectra corresponding to intranodal quasiparticle scattering
(central region) and internodal scattering (outer regions).
Similar features have also been observed experimentally
[6]. The high-intensity regions that we find are pointlike at
zero energy, and acquire distinct features as one increases
the energy (STM bias). Thus, at low energy the central
high-intensity region is a filled circle, while the outer
regions are empty. Also, the rotational symmetry of the
high-intensity regions located at the corners of the BZ is
broken, while it is preserved for the high-intensity regions
centered on sites of the reciprocal lattice. With increasing
the energy even higher, other effects such as the changing
of the shape of the equal-energy contours from circular to
triangular (trigonal warping) start playing an important
role. At very high energy the FTSTS intensity map be-
comes quite intricate.

We now turn to the analytical study of the dependence of
the LDOS on the relative position with respect to the
impurity ( ~r) at low energies. In this range, the physics is
dominated by linearly dispersing quasiparticles close to the
Dirac points. We find that spatial variations of the LDOS
due to the impurity are given by

 ��~r; E� / �Im�G��~r; E�T�E�G�~r; E��


 �
X
m;n

Im�ei� ~Km� ~Kn�� ~rGm��~r; E�T�E�Gn� ~r; E��;

(4)

where m, n denote the corresponding Dirac points. Here
T�E� is the T matrix, which for a delta-function impurity is
given by [9] T�!� � �I � V

R d2 ~k
SBZ

G� ~k;!���1V, where I is

the 2� 2 identity matrix, and the integration over ~k is
performed on the BZ, whose area is SBZ � 8�2=3

���
3
p

.
Using Eq. (3) and expanding the Hankel functions to

leading order in 1=r, we find that far from the impurity
(!r=v� 1) the corrections to the local density of states
due to scattering between the nodes m and n are given by

 �mn� ~r;!�/
!
r

Imft�!�ei� ~Km� ~Kn�� ~r�2i!r=vi�1

���m� ~r��n�~r��g; (5)

where t�!� is the nonzero element of the T matrix (T11),
and we used the fact that ���~r� � ��� ~r�.

In the case of intranodal scattering (m � n) the above
expression vanishes and the LDOS is dominated by the
next leading correction �m�~r;!� / sin�2!r=v�=r2. This is
different from what usual wisdom would suggest for a two-
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FIG. 1. FTSTS spectra for a monolayer graphene sample with
a single delta-function impurity. (a), (c), and (d) correspond to
energies 0:15t, 0:6t, and 1:2t respectively, at � � 0:07t. The BZ
is indicated by dashed lines. The actual lowest (0) and highest (1)
values of the FTSTS intensity are different for each energy
[(�1:3, 2.6) for 0:15t, (�0:8, 5.9) for 0:6t, and (�6:2, 7.2) for
1:2t in arbitrary units]. (b) shows a cross section of the FTSTS
intensity as a function of kx for ky � 0, and for energy 0:15t.
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dimensional system (1=r decay) [3,4], and has also been
described in Refs. [1,2]. We should note that the two-
dimensional FT of sin�2!r=v�=r2 is roughly �m�q;!�/
���2!�qv�=2�arcsin�2!=qv��1���2!�qv��. This
corresponds to a filled circle of high intensity in the FTSTS
spectrum, which is consistent with the results of our nu-
merical analysis for the central region of high intensity.

Nevertheless, for the decay of the Fridel oscillations
generated by internodal scattering (m � n), the leading

order behavior is 1=r. The FT of cos�2!r=v�=r is ��qv�

2!�=
�������������������������
q2v2 � 4!2

p
, which translates into empty circles of

high intensity in the FTSTS spectra, consistent with our
numerical analysis. However, since the inverse quasipar-
ticle lifetime � is finite, there will be some broadening of
the resonances and some weight inside the circular
contours.

For some of the Fridel oscillations generated by inter-
nodal scattering, such as the ones between neighboring
node pairs [e.g., (1, 3)], the rotational symmetry is broken:
��1�~r��3�~r� � e�i�=3�x� iy�2. However, for next-to-
nearest-neighbor node pairs [e.g., (3, 5)], ��3� ~r��5� ~r� �
e�i2�=3, and the oscillations are rotationally invariant. This
is consistent with the results of our numerical analysis: the
high-intensity regions centered on sites of the recipro-
cal lattice are rotationally symmetric, while the high-
intensity regions close to the corners of the BZ are not.

We now switch gears and consider the case of a
single impurity in bilayer graphene. The bilayer graphene
consists of two graphene layers stacked on top of each
other such that the atoms in the sublattice A of the first
layer occur naturally directly on top of the atoms in the
sublattice ~B of the second layer [10], with a tunneling cou-
pling of tp. We consider the case of an impurity located on
the sublattice A. The case of a single impurity located on a
site of a different type, as well as the case of multiple
impurities will be presented elsewhere. The resulting
FTSTS spectra for the LDOS in the top layer are presented
in Fig. 2.

Note that there are similarities and discrepancies be-
tween the monolayer and bilayer cases. As in the mono-
layer case, there are areas of high intensity centered on the
corners of the BZ, as well as on the sites of the recipro-
cal lattice. The main difference at low energy is that the
central region of high intensity is an empty circle, and not a
full circle (as for the monolayer case). At high energy, we
also note a doubling of the number of high-intensity lines
corresponding to the doubling of the number of bands.

An analytical study can be performed at low energies
starting from the expansion of the Hamiltonian around the
Dirac points m. In the sublattice basis �A; ~B� this yields
[11]:

 H bilayer
m � ~k� � 0 � ~�m� ~k��

2

� ~��m� ~k��
2 0

 !
(6)

where for simplicity we have set the effective mass of the
quadratic spectrum to 1. The corresponding Green’s func-
tion in real space is given by

 Gm� ~r;!� /
H�1�0 �z� ���m� ~r��2H

�1�
2 �z�

����m�~r��
2H�1�2 �z� H�1�0 �z�

 !
(7)

where we denoted z � r
�������
j!j

p
=v. Starting from Eq. (4), we

perform a similar analysis to the case of monolayer gra-
phene. Thus we note that at large distances (z� 1), as
opposed to the monolayer case, the leading (1=r) contri-
bution for intranodal scattering is nonvanishing:

 �m� ~r;!� /
1

r
�������
j!j

p cos�r
�������
j!j

p
=v�: (8)

This is consistent with the appearance of an empty circular
contour at the center of the BZ, as opposed to the filled
circle for the monolayer case. The leading contribution to
the decay of the oscillations due to internodal scattering is
also 1=r. Note that in the monolayer case the amplitude of
the Friedel oscillations corresponding to intranodal scat-
tering is independent of energy, and the amplitude of the
Friedel oscillations corresponding to internodal scattering
increases as !2, while for the bilayer case all oscillations
decrease with energy as 1=

�������
j!j

p
.
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FIG. 2. FTSTS spectra for a bilayer sample. (a) and (c) depict
the FTSTS intensity in arbitrary units at energies 0:1t, 0:4t, with
tp � 0:3t, and � � 0:05t. The actual lowest (0) and highest (1)
values of the FTSTS intensity are (�6:9, 3.6) and (�6:0, 7.4), re-
spectively. (b) and (d) are cross sections at ky � 0 of (a) and (c).
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The third system we consider is a monolayer graphene
sample with a single screened-Coulomb (charged) impu-
rity. Its impurity potential (in momentum space) has V11 �
V22 / 1=�q� 1=�0�, where �0 
 4:5a is the screening
length [12]. Given the momentum dependence of the im-
purity, one can no longer use the T-matrix approximation,
and must use instead the Born approximation. Our results
are plotted in Fig. 3. Note that the intensity of the outer
areas of high intensity is very much reduced compared to
the intensity of the inner area. This is consistent with the
form of the scattering potential, which generates less scat-
tering between quasiparticles located on different nodes
than between quasiparticles located on the same node.
Similar qualitative differences have also been found be-
tween the LDOS oscillations generated by the ‘‘mirage’’
images of Coulomb-type impurities and delta-function
impurities in graphene pn junctions [13].

To conclude, we have computed the effect of single-
impurity scattering on the Fourier transform of the LDOS,
which is measurable experimentally by FTSTS. We have
found that the FTSTS spectra in the vicinity of an impurity
are a very good tool to distinguish between monolayer and
bilayer graphene. In particular, for monolayer graphene,
the Friedel oscillations due to intranodal scattering decay
as 1=r2 and are rotationally invariant. In the FTSTS spectra
they correspond to a filled high-intensity circular region at
the center of the BZ. On the other hand, the Fridel oscil-
lations due to internodal scattering decay as 1=r. They lead
to different FTSTS features, such as circular contours of
high intensity centered around the corners of the BZ and on
sites of the reciprocal lattice. Some of these contours dis-
play a breaking of rotational invariance. For the bilayer

case both the internodal and the intranodal Fridel oscilla-
tions decay as 1=r.

We have also showed that the FTSTS spectra can be used
to distinguish between different types of impurities, for
example, between a delta-function impurity and a screened
Coulomb scatterer.

Last, but not least, we have noticed that, while the
FTSTS spectra in the presence of an impurity can give
information on the band structure, they are not fully de-
termined by it, but also contain very important information
about the specific form of the Hamiltonian. We believe that
this feature is very important, and could be also used in the
case of cuprates to understand the physics of high tem-
perature superconductivity.
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FIG. 3. FTSTS spectra for a graphene monolayer with a
screened-Coulomb impurity at energy 0:2t, and � � 0:07t. The
lowest and highest values of the intensity are (�1:7, 42.3) in
arbitrary units. (b) presents a cross section at ky � 0.
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