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We study analytically the metal-insulator transition in a disordered conductor by combining the self-
consistent theory of localization with the one parameter scaling theory. We provide explicit expressions of
the critical exponents and the critical disorder as a function of the spatial dimensionality d. The critical
exponent � controlling the divergence of the localization length at the transition is found to be � �
1
2�

1
d�2 thus confirming that the upper critical dimension is infinity. Level statistics are investigated in

detail. We show that the two level correlation function decays exponentially and the number variance is
linear with a slope which is an increasing function of the spatial dimensionality. Our analytical findings
are in agreement with previous numerical results.
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The recent experimental realization of disorder in ultra-
cold atoms [1] together with the rapid progress in numeri-
cal calculations [2–7] has revived the interest in the metal-
insulator transition (MIT) [8]. The statistical analysis of the
spectrum and eigenvectors plays a central role in the
identification and characterization of a MIT. Typical sig-
natures of a MIT include (a) multifractal [2,5] eigenstates
(for a review, see [9,10]), namely, the scaling of P q �R
ddrj �r�j2q / L�Dq�q�1� with respect to the sample size

L is anomalous with Dq < d a set of exponents describing
the transition, (b) scale invariance [3] of the spectral cor-
relations, (c) level repulsion of neighboring eigenvalues as
in a disordered metal, (d) linear number variance like in a
disordered insulator, �2�‘� � h�N‘ � hN‘i�

2i � �‘ (N‘ is
the number of eigenvalues in an interval of length ‘� 1
and h. . .i stands for ensemble average) but with a slope �<
1. In 3d, � � 0:27 for higher dimensions, see Refs. [4,7].
Level statistics with these features are usually referred to as
critical statistics [3,11,12].

Theoretical progress has been much slower in recent
times. With the exception of the case of a Cayley tree
[13] geometry we are indeed far from a quantitative ana-
lytical theory of the MIT. Below we briefly review the main
analytical approaches to the MIT problem. In the original
Anderson’s paper the critical disorder at which the MIT
occurs was estimated by looking at the limits of applica-
bility of a locator expansion [8,14]. In this approach [8] the
metal-insulator transition is induced by increasing the
hopping amplitude of an initially localized particle. A
more refined self-consistent [15] condition, still within
the locator formalism, provided a similar answer. This
method is only exact in the case of a Cayley tree but it is
believed to be accurate in the d! 1 limit. In both cases a
MIT in 3d is predicted correctly. However, the estimated
critical disorder is considerably smaller than the one found
in numerical simulations [2]. This disagreement persists in
higher dimensions [7].

The one parameter scaling theory [16] (OPT) provides a
completely different approach to the MIT. A key concept in

this theory is the dimensionless conductance g � Ec=�
[17] where Ec, the Thouless energy, is an energy scale
related to the diffusion time to cross the sample and � is
the mean level spacing. In a metal, Ec � @Dclas=L2

(Dclas � vFl=d is the classical diffusion constant with l
the mean free path and vF the velocity of the particle) and
therefore g / Ld�2. In an insulator the particle is exponen-
tially localized and g / e�L=� where � is the localization
length. The OPT is based on the following two simple
assumptions: (a) ��g� � @ logg�L�

@ logL is continuous and mono-
tonic, (b) The change in the conductance with the system
size only depends on the conductance itself. With this input
the OPT predicts correctly a MIT for d > 2 characterized
by a size independent dimensionless conductance g � gc
such that ��gc� � 0 and ��g�> �<�0 for g > �<�gc. In
order to make more quantitative statements about the MIT
it is necessary to understand in detail how the system
approaches the transition.

In the case of d � 2� � (�	 1) the MIT occurs at
weak disorder. A rigorous analytical treatment is possible
by combining diagrammatic perturbation theory and field
theory techniques [18–20]. The results thus obtained for
critical exponents and critical disorder are in agreement
with numerical calculations [10]. Later on Vollhardt and
Wolfle [21] proposed an extension of this theory valid for
any d. The idea was to go beyond perturbation theory
around the metallic limit by solving a self-consistent equa-
tion for a renormalized diffusion coefficient. The self-
consistent condition was obtained by relating ladder dia-
grams associated with diffusions with crossed diagrams
associated with Cooperons. Time reversal invariance is a
required condition for this relation to hold. As in the d �
2� � case, the MIT is induced by the growing effect of
constructive interference on an otherwise metallic state.
However, a similar self-consistent condition was also ob-
tained starting from a locator expansion [22]. Unfortu-
nately some of the results of the Vollhardt-Wolfle theory
do not agree with recent numerical results: for instance it is
predicted that the upper critical dimension for localization
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is d � 4 and that the critical exponent � controlling the
divergence of the localization length is � � 1=�d� 2�.
However numerical results indicate the upper critical di-
mension for localization is d > 6 and � � 1:5, 1 in 3d, 4d,
respectively [4,7].

From the above discussion it seems clear that except in
the d � 2� � limit the MIT cannot be described by any
perturbation theory around the metallic or the insulator
side. The ultimate reason for this is that, according to the
OPT, the MIT is a fixed point, ��gc� � 0, of the motion. It
is a well known fact that in these situations the Hamiltonian
may have universal properties completely different from
the ones observed in the proximity of the transition. The
above theoretical approaches neither can be extrapolated to
the physically relevant case of d � 3 nor predict the de-
pendence with the spatial dimensionality of different pa-
rameters describing the transition.

In order to have a better understanding of this problem, a
deeper knowledge of the dynamics precisely at the tran-
sition is needed. This Letter is a first step in that direction.
We solve the self-consistent condition of Vollhardt-Wolfle
[20,21] but including the spatial dependence of the diffu-
sion constant predicted by the OPT. With this simple input
we obtain explicit expressions of different parameters
characterizing the MIT such as critical exponents and the
slope of the number variance as a function of the spatial
dimensionality d. The analytical expressions for critical
exponents and level statistics are in agreement with pre-
vious numerical calculations [4,5,7]. Throughout the Letter
we assume time reversal invariance, and periodic boundary
conditions. The results of this Letter are thus not applicable
to the MIT of the integer quantum Hall effect [23] or to the
one occurring in a 2d disordered system with spin-orbit
interactions [24]. The extension of this semiclassical for-
malism to these cases will be published elsewhere [25].

One parameter scaling theory and anomalous diffusion
at the MIT.—In the metallic limit, g! 1, the dynamics of
a single particle in a random potential is well described by
a normal diffusion process. The density of probability
P� ~r; t� of finding a particle, initially at the origin, around
the position ~r at time t is described by the solution of the

diffusion equation, P�~r; t� � e�j ~rj
2=Dclas t

�2Dclast�d=2 in real space and

P�!; q� � 1
�i!�Dclasq2 in Fourier space where j ~qj2 
 q2.

Since hr2i � Dclast, g / Ld�2 � 1 for d > 2. These ex-
pressions are the starting point to study transport properties
and level statistics in the metallic limit or when the local-
ization corrections are small [10]. The MIT for d � 3
occurs in the strong disorder region which is beyond the
range of applicability of perturbation theory. However, the
OPT can predict the type of motion at the critical point for
any dimension: at the MIT g � Ec=� does not depend on
the system size. Since � / 1=Ld, the Thouless energy must
scale asEc / 1=Ld. This can happen only if the diffusion at
the MIT is anomalous with, hr2mi � t2m=d [26] wherem is a
positive integer. This result can likewise be interpreted as

that the diffusion constant becomes scale dependent
D�L� / 1=Ld�2 or, in momentum space, D�q� / qd�2.
The OPT is only capable to predict hr2i but not the distri-
bution function P�!; q�. However, it is precisely this func-
tion the one needed for the evaluation of critical exponents
or level statistics. On the other hand it is evident that any
perturbation theory around the metallic or insulator limit
will fail if it cannot take into account the anomalous
diffusion predicted by the OPT. In fact, anomalous diffu-
sion in low dimensional systems has been related to a
power-law decay of the eigenstates [5,27]. This strongly
suggests [25] that a new basis for the localization problem
given by eigenstates with a power-law decay is the starting
point for a meaningful perturbation theory at the MIT.

In order to proceed we have to come up with an ex-
pression for P�!; q� consistent with the OPT predic-
tion, hr2i � t2=d and which at the same time can describe
the dynamics in the proximity of the MIT. The simplest
alternative is to assume that the classical diffusion coeffi-
cient Dclas gets renormalized to D � ~D�!� ~D�q� with
~D�q� � D0q

d�2. The function ~D�!� is given by the solu-
tion of the self-consistent condition of Vollhardt-Wolfle,
~D�!�
Dclas
� 1� �

�@VDclas

P
q�1=��

i!
~D�!� ~D�q�

� q2�
.

As a first step to solve this self-consistent equation
we replace the sum by an integral and write down �

and Dclas as a function of kF � mvF=@ and l,
~D�!�
Dclas
�

1�
dk2�d

F
�kFl

R1=l
0 dq�jqjd�1=� �i!

~D�!�D�q�
� q2�
, using x2d�3

ad�xd
�

adxd�3� 1
ad
� 1

ad�xd

 and noting that the effective disorder

strength is controlled by the parameter � 
 1=kFl (the
metallic limit corresponds thus with �! 0),

 

~D�!�
Dclas

� 1�
d

�kFl�
d�1�d� 2��

�
1

D0�2

dk2�d
F

�kFl

�
Z 1=l

0
dq

jqjd�3

1
D0�2 � qd

; (1)

where we have used that the localization length � �

lim!!0

������������������������
� ~D�!�=i!

p
. This expression is obtained by

matching the predictions for the conductivity and density
response function on the metallic and insulating side of the
transition [20,21].

The third term in Eq. (1) vanishes (�! 1) as we
approach the MIT. We use this fact to compute the critical
disorder � � �c and the critical exponent s related to the
vanishing of the conductivity. The critical disorder �c �
� d�2
�d�2d
�1=d�1 is obtained by solving � in Eq. (1) with

lim!!0
~D�!� � 0. On the metallic side of the transition

lim!!0
~D�!� � 0 since ~D�!� / ��!� and the conductiv-

ity ��0� / gc=L � 0 for L! 1. Likewise it is straightfor-
ward to show ��0� / j�� �cj

s with s � 1. Both results
agree with the prediction of Vollhardt and Wolfle [21].
Therefore anomalous diffusion does not affect the behavior
of the conductivity and �c close to the transition. We note

PRL 100, 076404 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

076404-2



that �c � 1=� > 0 in the limitd! 1. This is consistent
with the fact that the MIT in the Cayley tree occurs at finite
disorder [13].

The situation is different in the case of the critical
exponent � related to the divergence of the localization
length. As we approach the transition from the insulator
side (� > �c) the localization length diverges as � / j��
�cj
��. The conductivity also vanishes on the insulator side

of the transition lim!!0��!� / i! [20,21]. Combining the
results for the metallic and insulator sides of the transition
it turns out lim!!0

~D�!� / i! � 0. Using this fact the
critical exponent � is obtained by simply solving Eq. (1)
for � with !! 0,

 � �
1

d� 2
�

1

2
: (2)

A few comments are in order: this expression (a) only
agrees with the Vollhardt-Wolfle prediction for d� 2,
(b) agrees with numerical calculations for any d > 2 di-
mensions [7], (c) shows that the upper critical dimension
for localization is infinity since � > 1=2 for any finite d.
This is the most important result of the Letter.

Finally, we study the critical dimensional conductance
gc �

@ ~D�L�
L2�

. In order to proceed we have to compute ~D�L�.
In practical terms this can be carried out by including a
lower-cutoff�1=L in the integral over momentum Eq. (1).
For � > �c, and !! 0, ~D�!� ! 0 and, ~D�L� � �

�
Sd
�2��d

�R1=L
0 �jqj

2d�3=� 1
D0�2 � qd�
. After performing the integra-

tion, and taking the limit �! 1 for a fixed L we obtain

 gc �
Sd

��d� 2��2��d
; (3)

where Sd is the surface of the d sphere. We note that gc 	
1 for d� 1. This result agrees with previous predictions
based on a self-consistent condition [21] or simple one
loop perturbation theory [28]. Thus anomalous diffusion
does not affect the value of gc. However corrections to the
above gc due to a finite L or � will be in general different
from the predictions of Refs. [21,28].

Level statistics at the MIT.—We study analytically the
number variance and the two level correlation function
(TLCF) at the MIT. Our main result is that the number
variance is linear �2�‘� � �‘ with � � 1� 2=d.

We are now interested in the properties of the system
precisely at the MIT. Key in our argument is again the fact
that diffusion is anomalous at the MIT. Our starting point is
the connected TLCF, R2��1; �2� � �h	��1�	��2�i, (hi de-
notes averaging over disorder realizations and 	 stands for
the spectral density). In the metallic limit, g� 1 and for
s 
 �1��2

� � g, the TLCF is related to P�!; qni� �
1

�i!�Dclasq2
ni

by, R2�s� � �
�2

�2<
P
niP

2�s�; qni�, where the

sum runs over all momentum eigenstates qni . This result is
semiclassical in the sense that interference corrections

represented by maximally crossed diagrams are not taken
into account. As disorder increases diffusion becomes
slower as a consequence of the growing interferences
effects. Corrections to the metallic results above are thus
expected.

The anomalous diffusion hr2i � t2=d at the MIT is re-
produced by simply replacing the standard diffusion pole
�q2 in P�!; q� by �qd. We thus propose that for s� gc
the TLCF at the transition is given by

 R2�s� � �
1

�2<
X
ni

1

�is� gcjqni j
d�2

; (4)

where jqni j �
�����������������Pd
i�1 n

2
i

q
. In this approach we assume all

interference effects are included in the renormalization of
the diffusion coefficient Dclas ! D0qd�2. Corrections to
this result are expected due to the multifractality of the
eigenstates. However, such corrections cannot modify the
scale invariance of gc at the MIT.

We are now ready to compute the number variance,
�2�‘� � h�N‘ � hN‘i�

2i � 2
R
‘
0�s� ‘�R2�s� with N‘ the

number of eigenvalues in an interval of length ‘ in units
of the mean level spacing. Carrying out this integral and
replacing the sum over momenta by an integral,

 �2�‘� �
1

�2

Sd
�2��d

Z 1
0
dtjtjd�1 ln

�
‘2

g2
ct

2d � 1
�
: (5)

Performing the integral and using Eq. (3),

 �2�‘� � �‘; � � 1� 2=d; ‘� gc: (6)

A linear number variance with �< 1 is considered a
signature of a MIT. The origin of this linear behavior
was predicted heuristically [12] by using OPT and making
the plausible approximation that eigenvalues interact only
if their separation is smaller than gc. The value of the slope
was later estimated to be � � d�D2

2d [29]. We do not fully
understand the relation between this result and ours � �
1–2=d. However, we note our expression for � reproduces
correctly the limits d� 2 and d! 1. For d � 3 our
prediction is around 10%–15% off the numerical value
[7], the predictions of Ref. [29] fail for d > 3.

We now turn to the discussion of the TLCF in the region
s� gc. We aim to examine the heuristic arguments of
Ref. [12] where it was suggested that for s > gc there
must be a sharp suppression of the spectral correlations.
If localization corrections are negligible the use of the
supersymmetry method permits an explicit evaluation of
the nonperturbative part of the TLCF [30]. RNP

2 �s� /
D2�s; g�whereD�s; g� �

Q
ni�0�1�

s2

q2d
ni
g2�
�1 is the spectral

determinant associated to the classical diffusion operator
P�!; q�. It is plausible to expect that such an expression for
RNP

2 can still be used at the MIT provided that the spectral
determinant is modified to take into account the anomalous

diffusion predicted by the OPT, namely, jqni j �
�����������������Pd
i�1 n

2
i

q
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and g! gc. This is again a semiclassical approximation,
we suggest that all the quantum interference effects at the
MIT are included by an appropriate redefinition of the
classical spectral determinant. The spectral determinant
D�s; gc� can then be estimated analytically by exponentia-
tion of the product, replacing sums by integrals and using
Eq. (3). The final result is simply,

 RNP
2 �s� / e

�2�2s�d�2�=d: (7)

We note (a) an exponential decay with a similar prefactor
has been observed in numerical calculation [7], (b) the
sharp decay of the TLCF does not occur for s� gc 	 1
but rather for s� 2d=�d� 2��� gc, (c) the conformal
symmetry predicted by the OPT at the MIT is only con-
sistent with an exponential or a power-law decay of the
TLCF, (b) the power-law decay of R2�s� observed in
Ref. [31] is related to how the system approach the tran-
sition rather than to the transition itself.

Limits of applicability.—According to numerical and
heuristic arguments [32] it is expected that P�q;!� will
depend on the multifractal dimension D2 rather than d for
times and distances much shorter than the Heisenberg time
and the system size, respectively. The proposed renormal-
ization of the diffusion coefficient [D�q� / qd�2] is in
principle restricted to the region q, !! 0. However we
note this region is the only one relevant in the calculation
of the critical exponents. In the evaluation of the number
variance �2�‘� other momentum regions may also be
relevant. Therefore our expression of the slope as a func-
tion of dmay get corrections depending on the multifractal
dimension D2 [29]. These corrections point to the limit of
applicability of our approach. The OPT is based on the
scaling of the moments not on the distribution function
itself. However, multifractality is a property of the distri-
bution function and consequently beyond the reach of the
OPT formalism.

In conclusion, we have put forward an analytical ap-
proach to the metal-insulator transition based on the
anomalous diffusion predicted by the OPT at the critical
point. With this simple input we have shown that the upper
critical dimension is infinity and found explicit expressions
for the critical exponents and critical disorder as a function
of the spatial dimensionality. Moreover, we have shown
that the number variance is asymptotically linear with a
slope which is a simple increasing function of the spatial
dimensionality. All our analytical predictions are in fair
agreement with numerical simulations.
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