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We use stroboscopic video microscopy to study the motion of a sheared fluid-gel interface. Mechanical
noise plays a role analogous to temperature, but with a low-frequency breakdown of linear response
consistent with an underlying instability. We relate the fast motion of the interface to the rheological
properties of the gel, laying the foundation for a non-Brownian optical microrheology.
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Fluid flow near a deformable solid is ubiquitous in
nature and technology. Blood flow through vessels [1],
lubrication of cartilage in joints [2], microfluidic valves
[3], and coating and printing processes [4] are all examples
of systems governed by the interaction between a flowing
fluid and an elastic solid. Similar interfacial phenomena
also occur in the multiphase flow of complex fluids [5–9].
Although the rheological properties of such nonequilib-
rium interfaces are both important and intriguing, they are
inaccessible to conventional rheometry, creating the need
for new noninvasive and localized techniques.

Optical microrheology has recently emerged as a power-
ful tool in condensed matter and biological physics [10].
Passive microrheology relies on thermal fluctuations to
excite optical signal and has recently been extended to
interfaces [11–14]. Active microrheology uses externally
applied forces to achieve the same end [15–17], with the
potential to be applied at the interface between a flowing
fluid and an elastic solid. For sufficiently soft solids, how-
ever, the situation is complicated by the free location of the
fluid-solid interface, which can give rise to nonlinear be-
havior and elastohydrodynamic instabilities [7,18]. The
simplest example of such an instability occurs when a
viscous fluid flows past a polymer gel. Linear stability
analysis predicts that even in the absence of inertia, the
interface will become unstable to periodic undulations
when the ratio of viscous to elastic forces, � � v�=RE,
exceeds a critical value [19], where v is a characteristic
fluid velocity, R is a characteristic length scale, � is the
fluid viscosity, and E is the shear modulus of the gel.

Here, we measure the motion of a sheared fluid-gel
interface for which mechanical noise plays a role analo-
gous to temperature. We find a low-frequency breakdown
of linear response consistent with an underlying instability,
but by focusing on the fast motion, we recover linear
response, laying the foundation for a particular type of
non-Brownian optical microrheology that can be used to
extract the bulk viscoelasticity of an otherwise inaccessible
soft solid from the dynamics of a sheared interface.

A schematic of the experiment is shown in Fig. 1. A
polydimethylsiloxane (PDMS) gel of thickness hg was

prepared on the lower plate of an optical shear cell.
A portion of the gel was also prepared on a disposable
plate to independently monitor the dynamic shear modu-
lus, G��!� � G0�!� � iG00�!�, in a controlled-strain
rheometer. To form the gels, dimethylvinyl-terminated
dimethyl siloxane oligomer was reacted with a cross-
linker (trimethylsiloxy terminated methylhydrosiloxane-
dimethylsiloxane copolymer). An organoplatinum catalyst
and diallyl maleate inhibitor were added to achieve the
appropriate room-temperature processing window. By
varying the ratio of oligomer to cross-linker, we study
the interval 20 Pa<E< 103 Pa.

After the gel cured, a dilute suspension of 3 �m latex
spheres in ethanol was introduced onto the gel surface at a
point of observation 2 cm from the center of the 4 cm
radius plates. When the ethanol evaporates, the spheres
adhere to the interface, and a Newtonian fluid of polypro-
pylene glycol (PPG, Mw � 4000, � � 1 Pa s) was poured
over the gel. The top plate was then lowered to a final fluid
thickness hf. For the data presented here, hg was ca:
0.5 cm with 100 �m< hf < 1500 �m. Shear flow of
mean local shear rate _� (from 0:1 s�1 to 10 s�1) was
introduced through a motor-driven rotation of the top plate.
The Reynolds number, Re � � _�hf

2=�where � is the PPG
density, is <0:025. After stepping the fluid to _�, the inter-
face was monitored optically until it reached a steady state.
The motion was then stroboscopically recorded (45 �s
flash) and analyzed using standard techniques of digital
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FIG. 1 (color online). Schematic of the experiment showing
2D motion characteristic of a 344 Pa gel at _� � 10 s�1.
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video microscopy [20]. In all cases, the motion of the
interface at the point of observation occurs in the focal
plane of flow (x) and vorticity (z). Tracking the trajectories
of neighboring spheres further reveals that this motion is
coherent over ca: 103 �m, with the interface at the obser-
vation point moving as a rigid body, and single-particle
tracking is thus sufficient.

The quiescent interface is static, implying that external
noise is critical. Indeed, measured 2D interfacial trajecto-
ries are stochastic in appearance (Fig. 1), reminiscent of a
trapped Brownian particle, even though the system is
completely non-Brownian. External noise can be charac-
terized as either nonshearing or shearing, where the former
arises from the coherent vibration of both plates and the
latter arises from their relative motion. To characterize
nonshearing noise, we tracked adhered microspheres in
the absence of any fluid as a function of motor speed and
gel modulus with the top plate above the gel-air interface.
This motion varied from<9% ( _� � 0:1 s�1) to<1% ( _� �
10 s�1) of that observed under the same conditions with
the fluid in place. Shearing noise, on the other hand, is the
dominant source of signal. It arises from either ‘‘fast’’
variations in the speed of the top plate (motor) or ‘‘slow’’
variations in the separation of the plates (wobble). Wobble,
measured optically to be �2 �m, leads to slow periodic
noise. Motor noise excites fast signal and is measured by
optically tracking objects fixed to the top plate. It consists
of a dominant harmonic on a stochastic background. The
Nyquist frequency for our standard video acquisition is
100 rad=s, above which the periodic part of the fast driving
signal will be aliased.

In Fig. 2, we show a comparison of the measured inter-
facial motion for gels of two different E (28 and 344 Pa) at
the same shear rate (5 s�1). As expected, the softer gel

shows larger fluctuations, with a component of large-
amplitude motion in the softer gel being markedly slower
[Fig. 2(a)]. The lower panel of Fig. 2(a) shows an expanded
time interval for the softer gel. Taking the time derivative
of the displacement gives velocity [Fig. 2(b)], the lower
panel again highlighting the fast motion of the softer gel.
Continuity of tangential shear stress across the interface
implies that these velocity fluctuations are essentially var-
iations in stress, the data further suggesting that such
fluctuations occur predominantly along the direction of
flow. Accounting for viscous penetration in the fluid, the
measured interfacial velocity fluctuations are comparable
to those expected in an unbounded fluid at a depth corre-
sponding to the position of the interface based on measured
variations in the speed of the top plate (Fig. 2, lower right
panel, 34 s to 35 s).

The mean-square displacement (MSD) of the interface
around steady-state equilibrium as a function of time is
shown in Fig. 3(a) for a 28 Pa gel at 10 s�1. The motion
appears ‘‘diffusive’’ at early t and ‘‘caged’’ with a slow
periodic component at later t, where the slow period is due
to wobble. A high-frequency harmonic in the speed of the
top plate is also evident in the z-component of the MSD.
Assuming linear viscoelasticity, we can compute the effect
of wobble on the displacement since all of the parameters
are known a priori. Such a comparison [inset Fig. 3(a), t >
0] suggests a breakdown of linear response in the ampli-
tude of the slow periodic motion. The data also suggest
intermittent slow aperiodic behavior [inset Fig. 3(a), t <
0], further evidence for the importance of nonlinear effects
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FIG. 2 (color online). (a) Fluctuations in x and z as a function
of t at _� � 5 s�1 for E � 28 and 344 Pa, where the dark (light)
curves denote x (z). The lower panel shows the response of the
28 Pa gel at faster timescales. (b) Velocity fluctuations from (a),
where the lower panel again shows the response of the 28 Pa gel
at faster time scales. Imposed velocity fluctuations based on the
measured motion of the top plate are indicated in the lower right
panel. All curves are offset for clarity.
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FIG. 3 (color online). (a) Log-log plot of the MSD vs t along x
(dark) and z (light) for E � 28 Pa at _� � 10 s�1, where the inset
shows typical steady-state displacement for two temporally
separated intervals [delineated t < 0 and t > 0] with the linear
response for plate wobble (smooth sinusoid). (b) Steady-state
MSD in the x-z plane vs _� for different E (28 Pa, 110 Pa, 344 Pa,
and 990 Pa from top to bottom) with scaling (c) as described in
the text.
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at low-frequency. The steady state MSD as a function of _�
for different E is shown in Fig. 3(b). Taking the mean strain

of fluctuations as
���������
hu2i

p
=hg and assuming that the magni-

tude of stress fluctuations is �� _�—with � ’ 0:1 being a
dimensionless constant characterizing the effective
strength of the noise—balancing stress at the interface
gives hu2i / �� _��2�hg=E�2 [Fig. 3(c)]. This simple force
balance argument (which neglects boundary conditions,
nonlinear effects, and viscous loss) predicts a slope of 1
in Fig. 3(c), with the data suggesting an exponent of 0.7.
The scaling enables an empirical determination of E from
the measured MSD.

On a more quantitative level, a useful point of reference
is the inertialess flow of a Newtonian fluid past a flat linear
elastic solid. When the shear is turned on, the interface
relaxes exponentially to a new equilibrium position dic-
tated by force balance, with a characteristic time scale � �
�hg=hf���=E�. In the absence of noise, there are no fluc-
tuations, and we thus consider the steady-state 2D dis-
placement, u�t�, in response to externally imposed 2D
vector stress fluctuations, ��t�, of zero mean and unspeci-
fied correlation, for which

 

_u� u=� � �hf=����t�; (1)

with u�0� � 0. This has the general solution

 u �t� � �hf=��
Z t

0
e��t�t

0�=���t0�dt0 (2)

from which we obtain the mean-square displacement

 hu2�t�i � �hf=��2
Z t

0

Z t

0
e�t
0�t00�2t�=�h��t0� � ��t00�idt0dt00

(3)

for a point on the interface. Taking the Fourier transform of
Eq. (2) gives u�!� � hg��!�=G��!� with G��!� �
E�1� i!��, all of the loss in our simplified model arising
from viscous damping in the fluid. This expression is
generalized by identifying G��!� as the shear modulus of
the gel [21]. If non-Brownian stress fluctuations at the
interface satisfy a form of the fluctuation-dissipation theo-
rem [22], with hj�i�!�j2i � 2�i� _��G00�!�=!, then the
power spectrum of displacements is

 hjui�!�j
2i �

2�ih
2
gG
00�!�

!jGj2
; (4)

where the noise strength �i� _�� is taken to be anisotropic in
the x-z plane.

The measured power spectra of steady-state displace-
ment fluctuations for a 28 Pa gel at varied _� are shown in
Fig. 4. The peak labeled A corresponds to wobble, while B
and its subharmonics reflect the fast periodic component of
the driving force. If the stress correlator in Eq. (3) is a delta
function, our simple model heuristically satisfies the func-
tional form of the fluctuation-dissipation theorem, with the
!�2 power law representing the high-frequency limit of

Eq. (4). The general validity of such an approach for the
strongly driven interface can be queried by using G��!�
independently measured with bulk rheometry in Eq. (4),
and such a comparison (smooth dashed curve, Fig. 4)
supports the scenario of harmonics of the driving fre-
quency superposed on a dominant ‘‘thermal’’ background.
The power spectra also suggest a breakdown of linear
response at low frequency, where the data deviate from
the profile of Eq. (4). This is consistent with the behavior
shown in Fig. 3, and it complicates any attempt to extract
the gel viscoelasticity from the motion of the sheared
interface. As the higher frequency modes are more inti-
mately linked to linear response, we thus propose filtering
out the low-frequency motion before further analysis of the
MSD. To delineate fast modes from ‘‘slow‘‘ modes, we
introduce the cutoff frequency !c shown in Fig. 4, which
corresponds to the degree of filtering needed to remove the
majority of the z-component of motion (Fig. 4). It also
coincides with the characteristic frequency where the
buckling instability is expected to emerge for the soft
gels [4,18,19]. Filtering was performed by Fourier trans-
forming the 2D trajectories to the frequency domain, multi-
plying the complex amplitude by the step function
	�!�!c�, and then transforming back to the time
domain.

Filtered MSD data for two different gels at _� � 10 s�1

(using the same !c) are shown in Fig. 5(a). The effect of
filtering can be seen by comparing the 28 Pa data in
Fig. 5(a) with that in Fig. 3(a). In both cases, the motion
sinusoidally relaxes to a plateau. When the stress correlator
in Eq. (3) is a delta function, the MSD relaxes exponen-
tially. For harmonic correlation, however, the relaxation
contains a damped oscillation with the same decay time. A
fit of the filtered MSD to a sum of these two effects
[sinusoidal curves, Fig. 5(a)] requires different damping
for each, implying that the periodic oscillations appear
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FIG. 4 (color online). Power spectra of displacement fluctua-
tions for a 28 Pa gel, where the dark (light) curve denotes x (z).
The the smooth dashed curve for 10 s�1 is the profile calculated
from Eq. (4) using G��!� from bulk rheology. Frequencies
corresponding to small variations in the gap (a) and the periodic
part of the fast driving force (b) at 10 s�1 are indicated, as is the
cutoff frequency used to distinguish fast and slow modes.
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underdamped. Focusing instead on the underlying smooth
relaxation, we know from bulk rheology that loss in the
gels actually scales as !�0:65, and we thus model the
envelope of the filtered MSD using a stretched exponential
relaxation with an exponent of 0.65 [smooth black curves,
Fig. 5(a)] to account for the broad range of linear relaxation
rates in the gel. Taking the numerical Laplace transform of
these expressions, we empirically adopt the approach of
Brownian microrheology [10,11] to obtain the viscoelastic
shear modulus of the gel by analytically continuing
G�1�s� / shu2�s�i via s! i!, as shown in Fig. 5(b). In
this comparison, the shape of G��!� is dictated by the
amplitude and decay constant of the smooth stretched-
exponential relaxations in Fig. 5(a), with a single multi-
plicative factor reflecting the strength of the non-Brownian
noise. The comparison in Fig. 5(b) is obtained by varying
the fits in Fig. 5(a) to optimize the agreement between the
bulk and micro results.

What we describe here represents a novel form of active
bulk microrheology, but it appears to be somewhat limited
by the instability of the sheared interface. The two types of
external noise encountered are exemplary of what one
would expect in any rotating plate device. Geometry-
specific boundary conditions are likely critical, and buck-

ling of the interface at the outer constrained edge of the
gel—linked to strain fields in both the vorticity and gra-
dient directions—would give rise to a z-component of
motion at the point of observation for the rotating
parallel-plate scenario in question here. A perturbative
treatment that connects the low-frequency nonlinear re-
sponse to the linear viscoelasticity of the gel for different
boundary conditions in the presence of noise of varying
frequency would be quite useful in this regard, and we
hope that the work described will help inspire such an
effort.
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FIG. 5 (color online). (a) Filtered MSD for a ‘‘soft’’ and
‘‘hard’’ gel driven at 10 s�1. The sinusoidal curves are from
Eq. (3), where the response of the 28 Pa gel contains one
harmonic and that of the 344 Pa gel contains two. The smooth
black curves are stretched-exponential relaxations motivated by
the bulk rheological response. (b) Comparison of the measured
bulk rheology with that based on the smooth fits in (a).
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