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We show that the phase sensitivity �� of a Mach-Zehnder interferometer illuminated by a coherent
state in one input port and a squeezed-vacuum state in the other port is (i) independent of the true value of
the phase shift and (ii) can reach the Heisenberg limit ��� 1=NT , where NT is the average number of
input particles. We also demonstrate that the Cramer-Rao lower bound of phase sensitivity, ���
1=

����������������������������������
j�j2e2r � sinh2r

p
, can be saturated for arbitrary values of the squeezing parameter r and the amplitude

of the coherent mode � by using a Bayesian phase inference protocol.
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Introduction.—The goal of quantum interferometry is to
estimate phases beyond the shot-noise (or ‘‘standard quan-
tum’’) limit. This field was initiated by Caves in 1981 [1],
who first suggested how to reach a sub–shot-noise sensi-
tivity by using coherent � squeezed-vacuum light as input
of a Mach-Zehnder (MZ) interferometer. A large body of
theoretical [2–5] and experimental [6,7] studies have fol-
lowed this work. The scheme proposed by Caves is
sketched in Fig. 1. One of the input states of the linear
lossless MZ is the coherent field j�ia �

P
�1
m�0 Cmjmia,

with � � ei�c j�j and Cm �
�me�j�j

2=2����
m!
p . The second input is

the squeezed-vacuum j�ib �
P
�1
m�0 Smjmib, where � �

rei�s , Sm �
�ei�s tanhr�m=2

2m=2
�������������
m! coshr
p Hm�0� [2] and Hm�x� are the

Hermite polynomials. According to the current literature,
based on the original works of the 1980s, the unknown
value of the phase shift between the arms of the interfer-
ometer can be estimated from the measurement of the
relative number of particles at the output ports, M̂out �

N̂c � N̂d. Fluctuations on the results obtained in p inde-
pendent measurements propagate to the estimated value of
the phase shift � [8], which can therefore be determined
with uncertainty [9]:

 �� �
1����
p
p

���������������������������������������������������������������������������������������
j�j2e�2r � sinh2r

�j�j2 � sinh2r�2
�
j�j2 � 2sinh2rcosh2r

�j�j2 � sinh2r�2tan2�

s
:

(1)

According to Eq. (1), we can obtain an increase in phase
sensitivity with respect to the shot noise only when the true
value of the phase shift is sufficiently close to the optimal
point � � �=2 [1,5] (dark fringe), where hM̂outi � hN̂c �

N̂di � 0. On the other hand, hM̂outi depends weakly on the
phase shift when � 	 0, � and the error propagation
formula Eq. (1) predicts large phase fluctuations around
these points. Asymptotically in the amplitude of the co-
herent state, j�j2 
 sinh2r, Eq. (1) predicts, at the optimal
point, a sub–shot-noise sensitivity [1,10,11]

 �� �
1����
p
p

e�r���
�n
p ; �� � �=2�; (2)

with the average number of photons input to the MZ, �n �
j�j2 � sinh2r ’ j�j2.

In this Letter we show that the choice of the average
relative number of photons as a phase estimator is not
optimal. Further information about the true value of the
phase shift is contained in the quantum fluctuations of the
number of particles measured at the output ports. As a
consequence, we show that the ultimate phase sensitivity of
a Mach-Zehnder fed by coherent � squeezed-vacuum light
is not given by Eqs. (1) and (2), but is

 �� �
1����
p
p

1����������������������������������
j�j2e2r � sinh2r

p �0 � � � ��: (3)

The phase sensitivity (i) is independent from the true value
of the phase shift over the whole interval 0 � � � � [12]
and (ii) it reaches the Heisenberg scaling

 �� �
1����
p
p

1

�n
; �0 � � � ��; (4)

when j�j2 ’ sinh2r ’ �n=2 and �n, p
 1.
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FIG. 1 (color online). Schematic representation of the Mach-
Zehnder interferometer. The input modes a, b are a coherent and
a squeezed-vacuum field, respectively.
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In the following, we will first analytically calculate the
Cramer-Rao lower bound (CRLB) [13], Eq. (3), and then
demonstrate that it is saturated by a Bayesian phase infer-
ence approach.

The Cramer-Rao lower bound.—The output state of a
lossless Mach-Zehnder interferometer is given by j outi �

e�i�Ĵy j ini [14], where, in our case, j ini � j�iaj�ib. The
conditional probability to measure Nc and Nd particles at
the output ports, given an unknown phase shift �, is

 P�Nc; Ndj�� �
��������
XN
n�0

CN�nSnd
N=2
�;N=2�n���

��������
2
; (5)

where � � �Nc � Nd�=2, N � Nc � Nd, and dj�;���� are
rotation matrix elements. According to the Cramer-Rao
theorem, the phase sensitivity of an unbiased estimator is
bounded by �� � 1���������

pF���
p , where the Fisher information is

F��� �
P
�1
Nc;Nd�0

1
P�Nc;Ndj��

�@P�Nc;Ndj��@� �2 � j�j2e2r � sinh2r.
By replacing this expression in the CRLB we retrieve
Eq. (3). There are a few important regimes which deserve
to be outlined. When r � 0 or � � 0 we obtain the
(�-independent) shot-noise limit �� � 1=

������
p �n
p

. The phase
independence of the case r � 0 has been studied and
experimentally demonstrated in [16]. When sinh2r�
j�j2 we obtain the sub–shot-noise limit discussed by
Caves, �� � e�r=

������
p �n
p

, Eq. (2), with, again, the important
difference that, here, the phase sensitivity is independent of
the true value of the phase shift. Notice that, in the limit of
very high squeezing, sinh2r
 j�j2, Eq. (1) predicts �� �
1=

������
p �n
p

(at � � �=2), while Eq. (3) gives a sub–shot-noise

scaling �� � 1=�
������
p �n
p ��������������������

4j�j2 � 1
p

�.
The most important regime predicted by Eq. (3) is

obtained when j�j2 ’ sinh2r ’ e2r=4� �n=2 (i.e., with
half of the input intensity provided by the coherent state
and half by the squeezed light). This gives the Heisenberg
scaling �� � 1=� �n

����
p
p
� when �n, p
 1. It is interesting to

note that, for these optimal values of the parameters � and
r, the error propagation formula Eq. (1) diverges. In

Fig. 2(a) we compare, as a function of r, the quantity������
�np
p

�� calculated with Eq. (1) (dashed line) and with
Eq. (3) (solid line), for � � �=2.

Why does the error propagation formula Eq. (1) provide
such poor phase sensitivity with respect to the CRLB? The
answer is that a phase estimate based only on the analysis
of the average relative number of particles does not exploit
all available information. In particular, it does not consider
information contained in the fluctuations of the number of
particles and (since the relevant probability distributions
are not Gaussian) in the higher moments [17]. In Fig. 2(b)
we plot

������
�np
p

�� as a function of the true value of the phase
shift. The dashed line is Eq. (1) and the solid line Eq. (3).

Bayesian analysis.—Is it possible to saturate the CRLB
and, furthermore, to demonstrate a phase estimation sensi-
tivity at the Heisenberg limit ��� 1=NT [18]? (NT is the
average number of particles used in the process.) A possi-
bility is to consider the maximum likelihood estimator
which, according to the Fisher theorem, saturates the
CRLB asymptotically in the number of measurements p.
In the following, however, we consider a Bayesian protocol
[19] and show that it also saturates the CRLB. To simulate
a phase estimation experiment, we (i) randomly choose p
values N�i�c , N�i�d at the output ports distributed according to
P�Nc; Ndj�� with an unknown �; (ii) invert the distribution
Eq. (5) using the Bayes theorem and associate to the
measured values fN�i�c ; N

�i�
d gi�1...p the probability distribu-

tion P��jfN�i�c ; N
�i�
d gi�1...p� �

Qp
i�1 P��jN

�i�
c ; N

�i�
d �; (iii) cal-

culate the phase sensitivity as the 68% confidence interval
around the maximum of the phase distribution. In
Figs. 2(a) and 2(b), the circles, obtained with the
Bayesian probabilities asymptotically in the number of
independent measurements p, coincide with the analytical
expression of the CRLB, Eq. (3).

Yet, in order to demonstrate the possibility to reach the
Heisenberg limit, ��� 1=NT , we have to carefully ana-
lyze the role of p [20]. Within the optimal choice of
parameters, j�j2 ’ sinh2r ’ �n=2
 1, we fix a total num-
ber of particles, NT � p �n, distributed in ensembles of p
independent measurements. There are two concurring be-
haviors contributing, in average, to ��. For small p, we are
in a preasymptotic regime characterized by large oscilla-
tions of

Pp
i�1�N

�i�
c � N

�i�
d �, which still provides sub–shot

noise but not the Heisenberg limit. For larger values of p,
we saturate the Fisher information and obtain �������
p
p

=NT . The prefactor
����
p
p

is due to the statistics of inde-
pendent measurements. As shown in Fig. 3(a), the optimal
value is popt ’ 30. The crucial point to notice is that popt

does not depend on NT . If it would, we could not claim the
Heisenberg limit. The phase sensitivity calculated at popt is
plotted in Fig. 3(b) as a function of NT (circles). The

dashed line is �� � 7:12=NT , while the solid line is ���

1=� ��������popt
p ����������������������������������

j�j2e2r � sinh2r
p

�. For comparison, we include
in the figure the shot-noise limit (dot-dashed line).
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FIG. 2 (color online). Comparison between Eq. (1) (dashed
line) and Eq. (3) (solid line). Circles are the results of a Bayesian
analysis. (a) Phase sensitivity ��

������
�np
p

as a function of the
squeezing parameter r, for � � �=2 and j�j2 � 10. Notice
that Eq. (1) diverges at sinh2r � j�j2 (dotted vertical line).
For r
 1, Eq. (3) gives ��

������
�np
p

! 1=
��������������������
4j�j2 � 1

p
(dotted hori-

zontal line). (b) ��
������
�np
p

in the limit p! 1 as a function of the
true value of the phase shift. Here j�j2 � 10 and r � 1.
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We emphasize that the CRLB predicts a phase sensitiv-
ity at the Heisenberg limit also when monitoring a single
output port (reduced MZ configuration). In this case, a
numerical calculation of the Fisher information at j�j2 ’
sinh2r shows a strong dependence on �, the optimal work-
ing point being close to 0 or � (depending on which output
port is monitored).

Discussion.—What is the physics underlying the in-
crease in phase sensitivity using squeezed-vacuum light?
In [1] Caves associated sub–shot-noise sensitivity to quad-
rature squeezing. Indeed, under the conditions � � �=2,

and j�j2 
 sinh2r, Eq. (1) reduces to �� � 2�X̂1�����
p �n
p , with the

quadrature X̂1 � �b̂
y � b̂�=2. With squeezed-vacuum light

�X̂1 � e�r=2 and we recover Eq. (2). Yet, the saturation at
the Heisenberg limit is the result of the large entanglement
among the two modes created by the beam splitter. In the
following, for the sake of simplicity, we fix (postselect) a
total number of particles N � �n. The input state j Ni �PN=2
���N=2 A�jN=2��iajN=2��ib is characterized by a

relative number of particles distribution P��� � jA�j
2,

where A� � 0 for odd values of N=2��, see Fig. 4(a).
After the first beam splitter, the distribution has the largest
peaks centered at � � N=2, see Fig. 4(b), which indi-
cates that the corresponding quantum state j BS

N i contains a
large ‘‘NOON’’ component, jNOONi ’ jN; 0i � j0; Ni.
This is characterized by a mean-square fluctuation of
the order of total number of particles N, which is
typical of states attaining the Heisenberg limit [21]. This
can be intuitively understood by considering the phase
distribution obtained by projecting j BS

N i over the phase
states j�i �

PN=2
���N=2 e

�i��jN=2� �iajN=2� �ib, see
Fig. 4(c). The frequency of the oscillations is �N, so
that each peak has a width �2�=N. It is also interesting
to notice that the highest NOON component is obtained

when j�j2 � �n=2 and �n
 1, which precisely correspond
to the optimal conditions to reach the Heisenberg limit
Eq. (4). This is illustrated in Fig. 4(d), where PNOON �
jhNOONj BS

N ij
2 is shown as a function of j�j2= �n with

�n � 20.
Conclusions.—The discovery that nonclassical states of

light can dramatically improve the sensitivity of interfero-
metric phase estimations has been crucial for the develop-
ment of modern quantum optics [5]. Several states and
strategies have been proposed in the literature to beat the
standard quantum limit [1,6,15,19,22]. Here we have
shown that the oldest of such proposals, a linear lossless
Mach-Zehnder interferometer illuminated by a coherent �
squeezed-vacuum light [1], can indeed reach the
Heisenberg limit Eq. (4), but only if all information in-
cluded in the measurement of the number of particles at the
output ports is properly taken into account. Moreover, we
have also shown that the phase sensitivity is independent of
the true value of the phase shift for arbitrary values of
squeezing, which can be proved within current technology.
A proof of principle of Eq. (4) can also be obtained
experimentally in the limit of small �n. High-efficiency
number-resolving photo detectors have been recently ap-
plied to interferometry [16,23] and large squeezing has
been created in [24,25]. A possible application is, for
instance, the increase of sensitivity of the large scale
interferometers dedicated to the detection of gravitational
waves [26].

We thank Juan Hodelin, George Khoury, and Dirk
Bouwmeester for useful discussions.
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