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The equation governing the time evolution of the number density of loops in a cosmic string network is
a detailed balance determined by energy conservation. We solve this equation with the inclusion of the
gravitational radiation effect, which causes the loops to shrink (and eventually decay) as time elapses. The
solution approaches a scaling regime in which the total energy density in loops remains finite, converging
both in the infrared and in the ultraviolet.
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Introduction.—More than 30 years ago it was realized
that a network of one-dimensional topological defects
could form during a cosmological phase transition [1].
Such cosmic strings consequently evolve in a fashion
determined by the expansion of the Universe, intercommu-
tation events, and gravitational radiation. All these mecha-
nisms act in such a way so as to yield a scaling regime, in
which the network remains self-similar under rescaling, at
least in its large scale properties. This has been convinc-
ingly established by now, both through numerical [2–7]
and analytic [8,9] studies, and it is widely believed that the
interstring distance and the correlation length along a long
string both scale. However, the existence or not of a scaling
regime for the smaller scales (for example, the typical size
of the small loops) still remains an open question [10].
It is this problem we wish to address in this Letter.
Understanding the properties of small cosmic loops would
be a valuable achievement: the detectability of gravita-
tional waves emitted by cosmic strings [11–13] depends
crucially on their knowledge, while the size of the smallest
loops can also have some effect on microlensing [14]. To
this end we will consider the number density of loops—it
is the small scale structure that is responsible for their
production, and so the number density of small loops
provides a measure of the former. Presently, we demon-
strate that this quantity scales.

There are many processes that can act to change the
number density of loops with a given length l. Expansion
of the Universe causes the strings to stretch, but only on
scales larger than the horizon size [15]. Therefore loops
essentially do not grow in time. (Loops bigger than the
horizon distance are regarded as long strings.) Self-
intersections of cosmic strings can produce loops from
long strings and also fragment loops into smaller ones.
This mechanism was studied in [16], taking as an input
the simplified analytic model developed therein, which we
believe describes fairly accurately the evolution of the
small scale structure on cosmic string networks. Of course,
string intercommutation can lead to the absorption of loops
back into the long string population, but this process is
strongly suppressed for small loops and so can be ne-

glected. Finally, the coupling of matter in the form of
cosmic strings to gravity means that the network radiates
away part of its energy. This has been amply discussed in
the literature [17–20], and as a consequence loops shrink
as time progresses and eventually disappear from the
network.

The equation governing the evolution of the number
density of loops in a cosmic string network is a detailed
balance determined by conservation of energy. In what
follows we solve this equation, first ignoring gravitational
radiation and then taking into account this effect. It is
shown that the solution approaches a scaling regime and
if we include gravitational waves (GW) emission the total
energy density in loops remains finite, in particular, con-
verging in the ultraviolet (UV), even when the loop pro-
duction function diverges. Above the gravitational
radiation scale the loop energy density decreases with the
size of the loops as a power law that is in good agreement
with the numerical simulations of [5,7] and implies the
convergence of the total energy density in loops in the
infrared. However, below the gravitational radiation scale
this quantity falls off with a lower power of the loop length
in such a way that the energy density remains finite in the
UV limit also. Finally, we comment on the curious fact that
this subgravitational radiation regime seems to be apparent
in the results of [5], even though those simulations did not
include gravitational radiation.

Preliminaries.—Several scales can be defined for a cos-
mic string network. Among them, the characteristic length
of the network plays an important part. It is defined as the
length scale L such that a typical volume L3 of the network
contains a length L of long strings. Another important
concept is that of a scaling regime. We say that a quantity
(with units of length) is scaling if it remains constant in
units of the cosmological time t as the network evolves.
Thus, in a scaling regime we have L � �t, for some
constant �, and the energy density in long strings becomes

 �1 �
�L

L3 �
�

�2t2
; (1)

where � is the string tension. According to Ref. [5] the
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constant ��2 takes the value �3 in a matter-dominated
Universe and �9:5 in a radiation-dominated Universe,
whereas Ref. [6] provides the values ��2 � 3 and ��2 �
11:5, respectively.

Now, denote by dn�l; t� the number density of loops with
size comprised between l and l� dl at a given time t. Then
the quantity dn

dl has units of �length��4. Thus, if it ever
reaches a scaling regime during the cosmological evolu-
tion, it must eventually approach the following form:

 

dn
dl
� t�4f�l=t�: (2)

Borrowing notation from [5], define the length of loops in
units of the horizon size, � � l=dh. If the scale factor takes
the form a�t� / t�, the horizon size can be expressed as
dh � t=�1� ��, and so the signature of a scaling regime in
the loop number density is a solution of the form

 

dn
d�
�

S���

�d3
h

: (3)

S��� is known as the scaling function.
In what follows we shall need expressions for the rate at

which the loops shrink due to emission of gravitational
radiation and for the rate of loop formation. The power
radiated away by cosmic strings is typically given by P �
�G�2, whereG is Newton’s gravitational constant and � is
a numerical constant of order 50 [18,19,21–23]. Since a
loop of length l has energy �l, this implies that loops
shrink at a rate

 

dl
dt
� ��G�: (4)

A first attempt to analytically estimate the loop produc-
tion from long strings [16] resulted in a divergent total
energy density in small loops. There it was found that the
average number of loops produced per unit time, per unit
distance along the string and per unit loop length is given
by

 

dhN i
dtd�dl

�
c

l3

�
l
t

�
2�
; (5)

where c is the overall normalization of the loop production
function. For a matter-dominated era � � 0:25 and c �
0:042, while during the radiation epoch � � 0:10 and c �
0:121. These values of the normalization c are most likely
to be overestimates since fragmentation was not taken into
account. Indeed, these values of c exceed the numerical
results of [5] by factors of approximately 15 and 40, while
comparison with [7] yields factors of 3.5 and 85, respec-
tively. The latter reference considered the loop production
function, and so their results relate more directly to the
normalization c, whereas the former reference studies the
loop number density. Note that even though these simula-
tions might seem in conflict, the authors of [7] emphasize
that the range of lengths corresponding to the small loops is

not yet scaling. Furthermore, the determination of the
normalization from the scaling function is sensitive to the
choice of the range where the fitting is performed in [5]. So
there is a possibility that there exists no real discrepancy
between both simulations.

For a consistent description of the network, Eq. (5) must
be corrected at small scales. The correction is provided by
the smoothing due to emission of GW from cosmic strings
and has been computed in [24] considering a discrete
spectrum for the fluctuations. More recently an improved
result performed in the continuum limit was obtained in
[25], where the structure along the strings was found to be
smoothened on scales below

 lGW � 20�G��1�2�t: (6)

Hence, gravitational radiation introduces a natural cutoff
for the divergent loop production function, even though it
is believed to be unnecessary to achieve scaling [5,6].
However, we will disregard this effect in what follows
and see how far we can get.

Evolution of the loop number density neglecting gravi-
tational radiation.—As discussed in [16], if gravitational
radiation is neglected the number of loops within a comov-
ing volume changes only due to loop production:

 

d
dt

�
a3 dn
dl

�
�

ca3

�2t2l3

�
l
t

�
2�
: (7)

Defining F�l; t� � dn
dl �l; t� and inserting the power-law ex-

pression for the scale factor we obtain

 t _F� 3�F �
c

�2l4

�
l
t

�
1�2�

; (8)

which has the general solution

 F�l; t� �
c

�2�3�� 1� 2��t4

�
l
t

�
2��3

�
C0�l�

t3�
: (9)

The function C0 depends only on the variable l. Noting that
the inequality 1� 2�< 3� is satisfied both in the radia-
tion- and matter-dominated eras, we conclude that at late
times (t! 1) the loop number density approaches

 

dn
dl
�l; t� !

c

�2�3�� 1� 2��t4

�
l
t

�
2��3

: (10)

Thus, expressing everything in terms of � and dh we
indeed find that the loop number density approaches a
scaling regime; i.e., it takes the form (3) with

 S ��� �
c�1� ���1�2�

�2�3�� 1� 2��
�2��2: (11)

This confirms that the loop number density does approach
a scaling regime without taking into account gravitational
radiation. The exponent 2�� 2 � �p takes the values
�1:5 in the matter era and �1:8 in the radiation era.
This is in good agreement with the numerical results of
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[5] who quote pmat � 1:41�0:08
�0:07 and prad � 1:60�0:21

�0:15.
However, these simple power laws become good fits to
the data only above a physical length ‘c, which is identified
with the initial correlation length of the network.
Furthermore, if the solution (11) were valid over the full
range of loop lengths, the total energy density would
diverge in the UV since

 

Z
l
dn
dl
dl � d�2

h

Z
S���d�: (12)

We will now show that including the process of shrinkage
of the loops due to gravitational radiation changes the
power law below the gravitational radiation scale, thus
yielding a convergent total energy density in loops.

Evolution of the loop number density including gravita-
tional radiation.—Inclusion of gravitational radiation into
the evolution equation for the loop number density intro-
duces an extra term on the left-hand side of Eq. (8) because
loops shrink at a rate given by (4). Therefore, we now have

 t _F� 3�F� �G�tF0 �
c

�2l4

�
l
t

�
1�2�

: (13)

Defining for convenience b � �G�, the solution of the
above differential equation may be written as
 

F�l; t� �
cb

�2

�l�bt�2��4

t2�

�
bt

l�bt

�
2��3�

	B
�
bt

l�bt
; 3�� 1� 2�;2�� 2

�
�
C�l�bt�

t3�
;

(14)

where B represents the Euler incomplete beta function and
C can be any function of the combination l� bt.

By employing the Taylor expansion

 B��;3��1�2�;2��2��
�3��1�2�

3��1�2�
�O���; (15)

we find that the first term in (14) behaves, for large l and
fixed t, as �l2��3, whereas the second term goes like
�C�l�. Requiring that the energy density in loops con-
verges in the limit l! 1 imposes that the general function
C�x� decays faster than x�2. Therefore, using the expan-
sion

 B�1� �; 3�� 1� 2�; 2�� 2� � �
	 csc�2	����3�� 2���2��2

�3�� 1� 2����2�� 1���3� 2����3�� 1� 2��
�O

�
1

�

�
; (16)

the second term in (14) is dominated by the first term as t! 1:

 

dn
dl
�l; t� !

cb

�2

�l� bt�2��4

t2�

�
bt

l� bt

�
2��3�

B
�
bt

l� bt
; 3�� 1� 2�; 2�� 2

�
: (17)

Once again converting to the variables � and dh, we obtain a solution of the form (3) with

 S ��� �
cb2��3�

�2�1� ��4

�
�� �1� ��b
�1� ��b

�
3��4

B
�
�1� ��b

�� �1� ��b
; 3�� 1� 2�; 2�� 2

�
: (18)

Now we can use the series expansions (15) and (16) to recover the limits for small and large loops. The separation
between these two regimes is set by the gravitational radiation scale �G�, and we find for �
 �G� the same result (11),
whereas for �� �G�

 S ��� ’
	�1� 2�� csc�2	����3�� 2��

�3�� 1� 2����2����3� 2����3�� 1� 2��
c

�2�G��1� ��2�2� �
2��1: (19)

Since 0< 2�< 1 holds in both cosmological eras, the
integral (12) is manifestly convergent and so the total
energy density in loops is finite, as desired.

Discussion.—We may now compare our results with
those obtained numerically in [5]. We have already noted
that the exponent 2�� 2 agrees well with the simulations
for the larger loops. However, we have shown that taking
into account gravitational radiation has the effect of bend-
ing the curves for � & �G� so that the exponent then
becomes 2�� 1. Indeed, Figure 3 of that reference does
appear to show a certain range of the parameter � in which
the scaling function behaves as such a power law. At first
sight this might seem intriguing since those simulations did
not include the gravitational radiation process directly.

However, small loops behave like matter and so the ex-
pansion of the Universe effectively shrinks the loops.
Because the simulations only keep loops with sizes greater
than a fixed fraction of the horizon, they are eventually
removed from the game, hence emulating gravitational
radiation. (I thank F. Dubath for pointing out this fact to
me.) The minimum counting size was �min � 10�5 so we
should expect the subgravitational radiation regime to set
in for comparable scales or smaller. A more accurate
estimate, equating the lifetime of the loops determined
by gravitational decay to the lifetime set by the minimum
counting size, yields �bend �

2��
1�� �min for the scale at

which the bending would occur. Nonetheless, it is curious
that this subgravitational radiation regime shows up also at
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early times in the simulations, when scaling is yet to be
achieved.

We also note that the inclusion of gravitational radiation
in our equations leads to a finite energy density of loops,
even though the loop production function used as an input
diverges at small scales. This means that the rate at which
loops are removed from the network is sufficiently high to
balance the diverging loop formation. Of course, this di-
vergence must be eliminated in order to satisfy string
length conservation. The gravitational smoothing length
scale (6) naturally introduces a UV cutoff on the loop
production function, and so this should be the typical
size of cosmic loops, as advocated in [25]. It is comforting
that this cutoff sets in much before the scale of validity of
the effective theory, namely, the thickness of the strings
[26], is reached, as long as the value of the string tension is
not too small. It remains to be seen if the correct normal-
ization of the loop production function can be reproduced
analytically by methods similar to those used in [16]. This
is left for future work.
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