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There has been growing interest in the possibility of testing more precisely the assumption of statistical
isotropy of primordial density perturbations. If it is to be tested with galaxy surveys at distance scales
& 10 Mpc, then nonlinear evolution of anisotropic power must be understood. To this end, we calculate
the angular dependence of the power spectrum to third order in perturbation theory for a primordial power
spectrum with a quadrupole dependence on the wave vector direction. Our results suggest that primordial
power anisotropies will be suppressed by & 7% in the quasilinear regime. We also show that the skewness
in the statistically anisotropic theory differs by no more than 1% from that in the isotropic theory.
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It is commonly assumed that primordial density pertur-
bations are statistically isotropic, and statistical isotropy is
a prediction of most structure-formation theories. The
notion of statistical isotropy can be quantified, though, by
considering models in which it is broken, and a growing
literature has discussed physical models that produce pri-
mordial perturbations that are not statistically isotropic [1].

The manifestations of departures from statistical iso-
tropy can take on many forms, but one simple example
[2] predicts a primordial power spectrum P�k� with a
quadrupole dependence on the direction k̂ of the wave
vector k,

 P�k� � A�k��1� g�P 2��k��; (1)

where P 2�x� � �3x
2 � 1�=2 is the second Legendre poly-

nomial, �k � k̂ 	 ê, and ê is a preferred direction. (Note
that our g� is 3=2 times that in Ref. [2].) Reference [3]
constructed a minimum-variance estimator of cosmic mi-
crowave background for the power-anisotropy amplitude
g� and showed that the Planck satellite will be sensitive to a
value of g� as small as 
0:02, a number which can be
estimated roughly by
10N�1=2

pix , where Npix is the number
of statistically independent pixels on the sky detected by
Planck.

Similar arguments suggest that the sensitivity of a gal-
axy survey, like the Sloan Digital Sky Survey [4] or Two-
Degree Field [5], should have a comparable sensitivity.
One issue that will arise, though, in testing statistical
isotropy of primordial perturbations is the quasilinear evo-
lution of the power spectrum. The root-mean-square
density-perturbation amplitude becomes of order unity at
distance scales 
10h�1 Mpc, and so quasilinear evolution
of the density field must be taken into account if the mass
distribution measured on these scales in the Universe today
is to be used to infer the primordial mass distribution.

In this Letter, we study the nonlinear evolution of den-
sity perturbations to see how nonlinearity affects statistical
isotropy. Does nonlinear evolution amplify departures
from statistical isotropy? Or possibly suppress them? To
take the first steps to address this question, we calculate the

power spectrum, to third order in perturbation theory, un-
der the assumption that primordial perturbations have the
form given in Eq. (1). The bottom line is that quasilinear
evolution suppresses departures from statistical isotropy,
but by only & 7% compared with the linear theory. Thus,
galaxy surveys in the linear or quasilinear regime will still
be useful diagnostics for departures from statistical iso-
tropy. We also calculate skewness, finding that the quad-
rupole power anisotropy changes it by no more than 1%.

To proceed, we use third-order perturbation theory to
determine whether a primordial power anisotropy is am-
plified or suppressed in the quasilinear regime. The power
spectrum P�k; z� is defined by the ensemble average of the
two-point correlation of the Fourier transform �̂�k; z� of the
density perturbation through

 h�̂�k1; z��̂�k2; z�i � �2��3�D�k1 � k2�P�k1; z�; (2)

where �D is the Dirac delta function. The density pertur-
bations can be expanded in terms of the linear-theory
density-perturbation amplitude, which has a redshift de-
pendence proportional to the linear growth factor D�z�,

 �̂�k; z� �
X1
n�1

�n�k�D
n�z�: (3)

In the linear regime, each Fourier mode grows at the same
rate, and so the linear-theory power spectrum Plin�k�,
corresponding to the linear density perturbation �1�k�,
evolves in such a way that the quadrupole dependence of
the primordial power spectrum [Eq. (1)] is preserved.
However, the nonlinear power spectrum will have different
anisotropy structure, and we shall investigate it following
the prescription developed in Refs. [6–8].

Reference [6] showed that solution of the nonrelativistic
fluid equations (i.e., continuity, Euler, and Poisson equa-
tions) allows one to write the nth-order density-
perturbation amplitude �n in terms of the linear perturba-
tion �1 through
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�n�k� �
Z dq1

�2��3
	 	 	

Z dqn
�2��3

�D�q1 � 	 	 	 � qn � k�

� �2��3Fn�q1; 	 	 	 ; qn��1�q1� 	 	 	�1�qn�: (4)

For any n, the function Fn can be obtained by recursive
relations given in Ref. [6]. In particular, the expressions for

F2 and F3 that are directly relevant for our purpose are
explicitly given by Eqs. (A2) and (A3) of Ref. [6]. (Strictly
speaking, F2 in Ref. [6] is for an Einstein–de Sitter uni-
verse, but Ref. [9] shows that its form in a �CDM model
with �m ’ 0:3 differs by less than 1%; the same should be
true for F3.) As all odd moments of �1�k� vanish, the power
spectrum to third order is given as

 �2��3�D�k1 � k2�P�2��k1; z� � D2�z�h�1�k1��1�k2�i �D4�z��h�2�k1��2�k2�i � h�1�k1��3�k2�i � h�3�k1��1�k2�i�: (5)

The second term, which evolves as D4�z�, is the next-to-
leading term evaluated to the third order of density pertur-
bation �3, while the first term is the linear part. We further
define a quantity Pmn as

 h�m�k1��n�k2�i � �2��
3�D�k1 � k2�Pmn�k1�; (6)

and with this definition, Eq. (5) is rewritten as

 P�2��k; z� � D2�z�P11�k� �D4�z��P22�k� � 2P13�k��:

(7)

We then need to write P22 and P13 in terms of the linear
spectrum Plin � P11. This procedure is straightforward,
and the results are very similar to those given in Ref. [8]:

 P22�k��2
Z dq

�2��3
�F�s�2 �q;k�q��

2Plin�q�Plin�k�q�; (8)

 P13�k� � 3Plin�k�
Z dq

�2��3
F�s�3 �q;�q;k�Plin�q�; (9)

where the symmetrized function F�s�n is obtained by sum-
ming n! permutations of Fn over its n arguments and
dividing by n!. The only difference from the expressions
in Ref. [8] is that the linear power spectrum now depends
on both magnitude k and direction k̂ of wave vector k.

In order to illuminate the anisotropy structure, we ex-
pand Eqs. (8) and (9) with Legendre polynomials. The
most general power spectrum today (D � 1) can be ex-
panded in Legendre polynomials P n�x� as

 P�k� � Plin�k;�k� �
X1
m;n�0

gm� P n��k�Bmn�k�; (10)

where the sum on n is restricted to even positive integers.
To the next-to-leading order, the expansion can be written,

 P�2��k� � Alin�k� � B00�k� � g
2
�B20�k� � fg��Alin�k�

� B12�k�� � g2
�B22�k�gP 2�k� � g2

�B24�k�P 4�k�;

(11)

where Alin, defined by Eq. (1), is the isotropic linear power
spectrum. Expressions for the expansion coefficients
Bmn�k� are given at the end of the Letter. We then rewrite
Eq. (11) as

 P�2��k� � A�2��k��1� g�2�2 �k�P 2��k� � g
�2�
4 �k�P 4��k��;

(12)

 g�2�2 �k� � g�c1�k� � g2
�c2�k�; (13)

 g�2�4 �k� � g2
�c3�k�; (14)

with the following definitions of A�2�, c1, c2, and c3:

 A�2��k� � Alin�k� � B00�k� � g
2
�B20�k�; (15)

 A�2��k�ci�k� �

8<
:
Alin�k� � B12�k� �i � 1�
B22�k� �i � 2�
B24�k� �i � 3�

: (16)

We note that the primordial quadrupole anisotropy also
affects the isotropic part of the next-to-leading order power
spectrum, A�2��k�. While this is interesting, that correction
is expected to be very small, being suppressed by g2

�. Thus,
hereafter we neglect this term; keeping it only gives correc-
tion of the order of g3

� and g4
� to g�2�2 and g�2�4 , respectively.

For the linear power spectrum Alin�k�, we use the fitting
formula for the transfer function given in Ref. [10] with
current values for the relevant cosmological parameters
[11].

If g� � 1, we may neglect all the terms proportional to
g2
�, and thus c1�k� is the only quantity relevant for anisot-

ropy structure. As linear theory simply gives c1�k� � 1, the
quantity c1�k� � 1 represents enhancement of the quadru-
pole anisotropy due to quasilinear evolution. In Fig. 1, we
plot c1�k� � 1. This figure shows that at large scales k &

10�2 Mpc�1, the nonlinear effect is subdominant and thus
anisotropic structure is the same as that for the linear
theory: c1�k� 
 1. The quadrupole anisotropy then de-
creases at smaller scales and it reaches minimum (c1 � 1 ’
�0:07) in the quasilinear regime, k
 0:1 Mpc�1.

Third-order perturbation theory becomes less accurate
for even higher wave numbers, k * 0:1 Mpc�1, at z � 0.
However, it remains very accurate at such (comoving)
scales in the high-redshift universe, z � 1 [12]. For general
redshifts z, the anisotropic power spectrum is given by
Eqs. (12)–(16) with replacements Alin ! D2�z�Alin and
Bmn ! D4�z�Bmn. The enhancement of anisotropy is then
given by c1�k; z� � 1, which is well approximated by
�c1�k� � 1�D2�z� in the quasilinear regime where Alin >
jBmnj. It is �0:03 at k � 0:1 Mpc�1 and z � 1; the sup-
pression is weaker. One can also see amplified anisotropy
for k * 0:3 Mpc�1 at redshifts when the third-order ap-
proach is still valid at such scales.

The corrections on the order of g2
� are represented by

c2�k� and c3�k�, both of which are also shown in Fig. 1.
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Besides it is suppressed by additional g�, c2�k� is intrinsi-
cally smaller than c1 � 1, thus giving only a minor correc-
tion. While possessing different anisotropy structure, the
higher multipole term proportional to c3�k� would also be
small in the quasilinear regime.

The results of our computations can be approximated by

 c1�k��1�0:463�2�k��0:886�4�k��0:407�6�k�; (17)

 c2�k� � �0:133�2�k� � 0:195�4�k� � 0:079�6�k�; (18)

 c3�k� � �0:163�2�k� � 1:062�4�k� � 1:082�6�k�

� 0:373�8�k�; (19)

in terms of the linear-theory density-perturbation ampli-
tude at wave number k, �2�k� � �k3=2�2�Alin�k�. These
fitting functions are plotted as dotted curves in Fig. 1. They
were obtained explicitly for the current best-fit cosmologi-
cal parameters [11], but when written in terms of �2�k�,
should also be accurate for other cosmological parameters.
Strictly speaking, the validity of third-order perturbation
theory breaks down when the terms higher order in �2�k�
become important; in this case, one will need to go to
fourth order or even higher-order corrections to obtain
the evolved power spectrum.

We now compute the skewness S3 � h�
3i=h�2i2 from

the anisotropic primordial power spectrum, to second order
in perturbation theory. The standard result, for an Einstein–
de Sitter universe, is S3 � 34=7 [13,14], and the result for a
�CDM universe differs by less than 1%. The three-point
correlation function at zero lag is a Fourier transform of

h�̂�k1; z��̂�k2; z��̂�k3; z�i, and thus the leading contribution
comes from D4�z�h�1�k1��1�k2��2�k3�i, etc. Rewriting �2

in terms of the linear fluctuation �1 and the integration
kernel F2, and using the definition of linear power spec-
trum, we obtain
 

h�3�z�i � 6D4�z�
Z dk1

�2��3
Z dk2

�2��3
F�s�2 �k1; k2�

� Plin�k1�Plin�k2�: (20)

After integrating over the directions of wave vectors, k̂1

and k̂2, we find

 h�3�z�i � D4�z�
�
34

7
�

8g2
�

175

��Z dkk2

2�2 Alin�k�
�

2
: (21)

On the other hand, the variance h�2i can be computed in a
similar manner, and to the same order, we obtain

 h�2�z�i � D2�z�
Z dk

�2��3
Plin�k� � D2�z�

Z dkk2

2�2 Alin�k�:

(22)

Therefore, we find the skewness to be

 S3 �
h�3�z�i

h�2�z�i2
�

34

7
�

8g2
�

175
: (23)

The requirement that the power spectrum be positive defi-
nite restricts the value 0< g� < 1, and so the largest
possible deviation from the isotropic value of 34=7 is less
than 1%. Thus, the skewness will not be an effective
discriminant for anisotropic power.

To conclude, we used third-order perturbation theory to
calculate the quasilinear evolution of a primordial power
spectrum. Our results show that nonlinear evolution sup-
presses the primordial anisotropy. The suppression is
7%
at k � 0:1 Mpc�1 and z � 0 compared with the linear
theory. This must be taken into account when interpreting
the result of searches in the quasilinear regime for primor-
dial anisotropy, and it indicates that nonlinear scales are
still valuable as tests for the isotropy of primordial power,
since the suppression is weak. We also found that the
standard prediction for the skewness is little changed if
the primordial power spectrum has a quadrupole
anisotropy.

Our perturbative results seem to indicate that a quadru-
pole anisotropy is enhanced at smaller scales, but this
enhancement cannot be trusted at low redshifts, as it occurs
at scales where our perturbative approach breaks down. It
seems counterintuitive to think that growth of perturbations
in the highly nonlinear regime can act to enhance the
primordial anisotropy, but it will require an N-body simu-
lation to be sure. Likewise, we imagine that departures
from statistical isotropy that are higher order in angle
(octupole, etc.) will also be suppressed by quasilinear
evolution, but we leave that calculation for future work.

Before closing, we provide explicit expressions for the
quantities in Eq. (10). For the numerical evaluation of
Eqs. (8) and (9), we shall choose k along the z-direction,

FIG. 1 (color online). Coefficients of anisotropic terms in the
third-order power spectrum, c1�k� � 1, c2�k�, and c3�k�. The
definitions are given in Eqs. (12)–(14). Solid curves are the
result of numerical integration, while dotted curves are the fitting
functions (17)–(19).
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k̂ � �0; 0; 1�, and the preferred direction ê in the x-z plane,

ê � �
���������������
1��2

k

q
; 0; �k�. We then use the spherical coordi-

nate for q � q�
���������������
1��2

p
cos�;

���������������
1��2

p
sin�;��, and

dq � q2dqd�d�. With this notation, Bmn in Eq. (10) are
given as

 Bmn � Smn � 2Tmn; (24)

 

Smn �
k4

�2

Z 1
0
dq

Z 1

�1
d�
�7k�� q�3� 10�2��2

�k2 � q2 � 2kq��3

� ImnAlin�q�Alin�
����������������������������������
k2 � q2 � 2kq�

q
�; (25)

 

Tmn �
k2Alin�k�

�2

Z 1
0
dqAlin�q�

�
J mn

�Kmn�q2 � k2�3 ln
�
k� q
jk� qj

��
; (26)

where Smn and Tmn correspond to P22 and P13, respec-
tively. Explicit forms of Imn, J mn, and Kmn are

 I 00 �
k2 � q2 � 2kq�

392
; (27)

 I 12 �
2q2�3�2 � 1� � �k2 � 2kq���3�2 � 1�

784
; (28)

 I 20 �
2q2 � 4kq�� k2�3�2 � 1�

3920
; (29)

 I 22 �
�k2 � q2��3�2 � 1� � kq��3�2 � 1�

2744
; (30)

 

I24 �
9

54 880
�4k2�3�2 � 1� � q2�35�4 � 30�2 � 3�

� 8kq��5�2 � 3��; (31)

 J 00 �
1

1008

�
6
k2

q2 � 79� 50
q2

k2 � 21
q4

k4

�
; (32)

 J 12 �
1

40 320

�
90
k4

q4 � 375
k2

q2 � 5006� 1732
q2

k2

� 300
q4

k4 � 315
q6

k6

�
; (33)

 J 20 �
7

10
J 22 �

7

18
J 24

�
1

201 600

�
90
k4

q4 � 135
k2

q2 � 1846� 268
q2

k2

� 540
q4

k4 � 315
q6

k6

�
; (34)

 K 00 �
7q2 � 2k2

672k5q3
; (35)

 K 12 �
6k6 � 41k4q2 � 76k2q4 � 21q6

5376k7q5
; (36)

 K 20 �
7

10
K22 �

7

18
K24

�
6k6 � 25k4q2 � 20k2q4 � 21q6

26 880k7q5
; (37)

and all the other components vanish. Note that T00 is the
same as Eq. (19) of Ref. [8].
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