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The holographic principle states that on a fundamental level the information content of a region should
depend on its surface area rather than on its volume. In this Letter we show that this phenomenon not only
emerges in the search for new Planck-scale laws but also in lattice models of classical and quantum
physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the
maximal information per unit area depends classically only on the number of degrees of freedom, it may
diverge as the inverse temperature in quantum systems. It is shown that an area law is generally implied by
a finite correlation length when measured in terms of the mutual information.
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Correlations are information of one system about an-
other. The study of correlations in equilibrium lattice mod-
els comes in two flavors. The more traditional approach is
the investigation of the decay of two-point correlations
with the distance. A lot of knowledge has been acquired
in condensed matter physics in this direction and is now
being used and developed further in the study of entangle-
ment in quantum-information theory [1–3]. The second
approach (see Fig. 1) asks how correlations between a
connected region and its environment scale with the size
of that region. This question has recently been addressed
for a variety of quantum systems at zero temperature [4–
13] where all correlations are due to entanglement, which
in turn is then measured by the entropy.

The original interest in this topic [12–15] came from the
insight that the entropy of black holes scales with the area
of the surfaces at the event horizon—we say that an area
law holds, in this case with a maximal information content
of 1 bit per Planck area. Remarkably, a similar entropy
scaling is observed in noncritical quantum lattice systems
while critical systems are known to allow for small (loga-
rithmic) deviations [6–11]. Both are in sharp contrast to the
behavior of the majority of states in Hilbert space, which
exhibit a volume scaling rather than an area law. These
insights fruitfully guided recent constructions of powerful
classes of ansatz states, which are tailored to cover the
relevant aspects of strongly correlated quantum many-
body systems [16,17].

A heuristic explanation of the area law in noncritical
systems comes from the existence of a characteristic length
scale, the correlation length, on which two-point correla-
tions decay (Fig. 1). Intuitively this apparent localization of
correlations should imply an area law, an argument that
can, however, not easily be made rigorous. A firm connec-
tion between the decay of correlations and the area law is
thus still lacking as well as is a proof and extension of the
latter beyond zero temperature. In the present work we
address both problems by resorting to a concept of
quantum-information theory—the mutual information.

The motivation for this quantity is that (i) it coincides
with the entanglement entropy at zero temperature; (ii) it
measures the total amount of information of one system
about another without ‘‘overlooking’’ hidden correlations;
(iii) the area law can be rigorously proven at any finite
temperature; (iv) the heuristic argument that decaying
correlations imply an area law can be made rigorous.
Moreover, we will prove that an area law is fulfilled by
all mixed projected entangled pair states, discuss the be-
havior of the mutual information for certain classes of 1D
systems in more detail, and show that a strict 1D-area law
implies that the state has an exact representation as a
finitely correlated state.

We begin by fixing some notation. We consider systems
on lattices � � ZD in D spatial dimensions, which are
sufficiently homogeneous (e.g., translational invariant).
Each site of the lattice corresponds to a classical or quan-

FIG. 1. We are interested in the mutual information (or entan-
glement) between the two regions A and B. Heuristically, if there
is a correlation length �, then sites in A and B that are separated
by more than � (the shaded stripe) should not contribute to the
information or entanglement between A and B. The mutual
information (or entanglement) should thus be bounded by the
number of sites at the boundary.
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tum spin with configuration space Zd or Hilbert space Cd,
respectively. Given a probability distribution � on � and
marginals �A, �B corresponding to disjoint sets A, B � �,
the mutual information between these regions is defined by

 I�A:B� � H��A� �H��B� �H��AB�; (1)

where H��� � �
P
x��x� log��x� is the Shannon entropy.

In the quantum case the �’s become density operators (and
their partial traces) and H has to be replaced by the
von Neumann entropy S��� � �Tr�� log��. The mutual
information has a well defined operational meaning as the
total amount of correlations between two systems [18]. It
quantifies the information about B that can be obtained
from A and vice versa. Elementary properties of the mutual
information are positivity, which it vanishes iff the system
factorizes, and it is nonincreasing under discarding parts of
the system [19]. We will occasionally write SA meaning
S��A�.

Area laws for classical and quantum systems.—Let us
start considering classical Gibbs distributions of finite-
range interactions. All such distributions are Markov
fields; i.e., if xA, xC, xB are configurations of three regions
where C separates A from B such that no interaction
directly connects A with B, then ��xAjxC; xB� � ��xAjxC�
holds for all conditional probabilities [with ��xjy� :�
��x; y�=��y�]. Let us denote by @A, @B the sets of sites in
A, B that are connected to the exterior by an interaction.
Exploiting the Markov property together with the fact that
we can express the mutual information in terms of a condi-
tional entropy H�AjB� � H�A� � I�A:B� then leads to an
area law

 I�A:B� � I�@A:@B� 	 H�@A� 	 j@Aj logd; (2)

where the first inequality follows from positivity of the
classical conditional information. Equation (2) shows that
correlations in classical thermal states are localized at the
boundary. In particular, if we take B the complement of A,
then we obtain that the mutual information scales as the
boundary area of the considered region and the maximal
information per unit area is determined by the number of
microscopic degrees of freedom.

For quantum systems less information can be inferred
from the boundary, and the Markov property no longer
holds in general. Remarkably enough, for the case of the
mutual information between a region A and its complement
B we can also derive an area law for finite temperatures. In
order to show that, we consider again a finite-range
Hamiltonian H � HA �H@ �HB, where HA, HB are all
interaction terms within the two regions andH@ collects all
those crossing the boundary. The thermal state �AB corre-
sponding to the inverse temperature � minimizes the free
energy F��� � Tr�H�� � 1

� S���. In particular, F��AB� 	
F��A 
 �B� from which we obtain

 I�A:B� 	 �Tr�H@��A 
 �B � �AB�� (3)

since HA, HB have the same expectation values in both

cases. As the right-hand side of Eq. (3) depends solely on
the boundary, we obtain again an area law scaling similar
to that in Eq. (2). For example, if we just have two-site
interactions, we obtain I�A:B� 	 2�jjhjjj@Aj, where jjhjjj
is the maximal eigenvalue of all two-site Hamiltonians
across the boundary, i.e., the strength of the interaction.
Note that the scale at which the area law becomes apparent
is now determined by the inverse temperature �. In fact, it
is known that at zero temperature the boundary area scaling
of the mutual information, which then becomes I�A:B� �
2S�A�, breaks down for certain critical systems [6–11].
Equation (3) shows that all the logarithmic corrections
appearing in these models disappear at any finite
temperature.

By comparing the area laws (2) and (3) we notice that
quantum states may have higher mutual information than
classical ones as the information per unit area is no longer
bounded by the number of degrees of freedom. In fact, our
results imply that if a system violates inequality (2), then it
must have a quantum character. Note that Eqs. (2) and (3)
directly generalize the findings of [20] for systems of
harmonic oscillators.

Let us now turn to an important class of quantum states
that goes beyond Gibbs states, namely, projected entangled
pair states (PEPS) [16]. These states bear their name from
projecting ‘‘virtual spins,‘‘ obtained from assigning en-
tangled pairs j�i �

PD
i�1 jiii to the edges of a lattice,

onto physical sites corresponding to the vertices. A natural
generalization of this concept to mixed states is to use
completely positive maps for the mapping from the virtual
to the physical level [21]. Since every such map can be
purified, these mixed PEPS can be interpreted as pure
PEPS with an additional physical system, which gets
traced out in the end. For all these states one can now
easily see that the mutual information between a block A
and its complement B satisfies a boundary area law

 I�A:B� 	 2j@Aj logD; (4)

since it is upper bounded by the mutual information, i.e.,
twice the block entropy, of the purified state, which is in
turn bounded by the number of bonds cut. An interesting
class of mixed PEPS are Gibbs states of Hamiltonians of
commuting finite-range interactions [22]. Note that these
are not necessarily classical systems, as a simultaneous
diagonalization need not preserve the local structure of the
interaction. The Kitaev model [23] on the square lattice,
the cluster state [24] Hamiltonian, and all stabilizer
Hamiltonians fall in this class. Moreover, Gibbs states of
arbitrary local Hamiltonians are approximately represent-
able as mixed PEPS [25].

Mutual information and correlations.—We will now
discuss the correlations measured in terms of the mu-
tual information between separate regions. Traditionally,
correlations are measured by connected correlation func-
tions C�MA;MB� :� hMA 
MBi � hMAihMBi of observ-
ables MA, MB. In fact, these two concepts can be related
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by expressing the mutual information as a relative entropy
S��ABj�A 
 �B� � I�A:B�, using the norm bound
S��j�� � 1

2 jj�� �jj
2
1 [26] and the inequality jjXjj1 �

Tr�XY�=jjYjj. In this way we obtain

 I�A:B� �
C�MA;MB�

2

2jjMAjj
2 k jMBjj

2 : (5)

Hence, if I�A:B� decays, for instance, exponentially in the
distance between A and B, then so will C. One of the
advantages of the mutual information is that there cannot
be correlations ‘‘overlooked,‘‘ whereas C might be arbi-
trarily small while the state is still highly correlated—a
fact exploited in quantum data hiding and quantum ex-
panders [27].

In the following we will relate the correlation length as
defined by the mutual information with the area law men-
tioned previously. To this end consider a spherical shell C
of outer radius R and thickness L� R, which separates the
inner region A from the exterior B (see Fig. 2). We denote
the mutual information between A and B by IL�R� and
define �M as the minimal length L such that IL�R�<
I0�R�=2 for all R, i.e., a correlation length measured by
the mutual information. Note that �M can be infinite (e.g.,
for critical systems) and that it takes into account the decay
of all possible correlations. Using the subadditivity prop-
erty of the entropy, we obtain the general inequality
I�A:BC� 	 I�A:B� � 2SC, which leads to

 I0 	 I�M � 2SC 	 4j@Aj�M: (6)

Here the first inequality implies the second one by inserting
I�M 	

1
2 I0 and the fact that S�C� 	 �Mj@Aj. So, indeed, we

get an area law for the mutual information solely from the
existence of the length scale �M, which expresses the
common sense explanation of Fig. 1. This area law is
also valid for zero temperature and when violated imme-
diately implies an infinite correlation length �M. The con-
verse is, however, not true since there are critical lattice
systems that obey an area law [20,28]. Surprisingly, an area

law can even hold under algebraically decaying two-point
correlations [20,28].

Examples in one dimension.—We will now investigate
the decay of correlations in terms of the mutual informa-
tion for certain simple cases. We will show that in all of
them �M is directly connected to the standard correlation
length. We will consider infinite lattices in 1 spatial di-
mension (see Fig. 2).

We start out by considering an important class of states,
the so-called finitely correlated states (FCS) [29], which
naturally appear in several lattice systems in 1D. They can
be viewed as 1D PEPS (or matrix product states). Every
FCS is most easily characterized by a completely positive,
trace preserving map (a channel) T: B�H 1� ! B�H 1 

H 2� with H 1, H 2 Hilbert spaces of dimension D, d,
respectively. Define further E�x� � Tr2�T�x�� and assume
the generic condition that E has only one eigenvalue of
magnitude one. The second largest eigenvalue � is related
to the standard correlation length through ��1= ln�. In
order to estimate �M, we exploit the fact that �AB factorizes
exponentially with increasing separation L, i.e., jj�AB �
�A 
 �Bjj1 � O�e�L=�� [22]. Moreover, T can be locally
purified, thereby increasing the size of H 2 by a factor of
dD2. Denoting the additional purifying systems by A0 and
B0, respectively, we obtain on the one hand I�A:B� 	
I�AA0:BB0� � S��AA0 
 �BB0 � � S��AA0BB0 �. On the other
hand, we can apply Fannes’s inequality [30], jS��� �
S���j 	 � log��� 1� �H��; 1� ��, where � � 1

2 jj��
�jj1 and � is the dimension of the supporting Hilbert space,
to I�AA0:BB0�. Because of the purification we deal with
finite dimensional systems (� � D2) so that putting things
together leads to

 IL�R� 	 log�D�O�Le�L=��: (7)

Since IL�R� increases (decreases) with R (L), and is lower
bounded by correlation function (5), this inequality imme-
diately implies that �M is finite and directly related to �.

The case considered above includes: frustration-free
Hamiltonians at T � 0, all classical Gibbs states, and all
quantum ones for commuting Hamiltonians. In all cases,
the area law is fulfilled following the results given in the
previous sections. However, it is known that for certain
critical local Hamiltonians the area law is violated at T �
0. In order to analyze how this behavior may emerge, we
will consider a simple toy model in 1D for which IL�R� can
be exactly determined.

Let us consider a spin 1
2 system formed of singlets (see

Fig. 2). The state is such that from any given site i the
probability of having a singlet with another site j is a
function f�ji� jj�. The mutual information between two
regions is equal to the number of singlets that connect
those regions, and thus it can be easily determined (if we
take a large region, so that we can average this number). If
we take f�x� / e�x=�, we have that: (i) all (averaged)
correlation functions decay exponentially with the distance
and that � gives the correlation length; (ii) IL�R� decays

FIG. 2. Left: We consider regions A and B separated by a
spherical shell of thickness L� R; Right: Simple 1D model
for a state that is formed by singlet pairs (indicated by lines
joining them) whose length follows a given probability distribu-
tion.
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exponentially with L and that �M  �; and (iii) an area law
is fulfilled. If we take f�x� / 1=�x2 � a2�, we obtain that:
(i) the correlation functions decay as power laws with the
distance; (ii) IL�R�  log�2R� L� and thus �M is infinite;
and (iii) the area law is violated. Thus, for this specific
model we see how the violation of the area law naturally
implies an infinite correlation length.

For zero temperature there is another simple connection
between the area law and the decay of IL�R� as a function
of the separation L. If for a pure state the entropy of a block
of length L goes to a constant K as SL � K � f�L� with
f�L� ! 0 for increasing L, then IL�R� ! f�L� as R! 1
for sufficiently large L. If the block entropy diverges
instead, then IL�R� ! 1 for every finite separation.

Saturation of mutual information implies FCS.—For
one-dimensional systems the area law just means a satura-
tion of the mutual information. Let us finally gain some
first insight into the structure of states having this property.
So consider a general (mixed) 1D translational invariant
state and denote the mutual information between a block of
length L and the rest of the system by I�L� and similarly its
entropy by S�L�. The latter can be shown to be concave

 S�L� � �S�L� 1� � S�L� 1��=2; (8)

which is nothing but the strong subadditivity inequality
applied to a region of length L� 1 surrounded by two
single sites. Equation (8) has strong implications on the
behavior of I�L�. Assume that the system is a finite ring of
length N, then
 

I�L� � I�L� 1� � �S�L� � S�L� 1��

� �S�N � L� 1� � S�N � L�� (9)

is a difference between two slopes of the entropy function.
Because of concavity of S�L�, I�L� is increasing as long as
L < N=2. Moreover, if from some length scale on the
mutual information exactly saturates, i.e., I�L� 1� �
I�L�, then all slopes between L and N � L have to be
equal so that strong subadditivity in Eq. (8) holds with
equality. States with this property are, however, nicely
characterized [31] as quantum Markov chains. That is,
there exists a channel ~T: B�H 
�L�1�

2 � ! B�H 
L
2 � such

that

 �id 
 ~T���L�1� � �L; (10)

where �L is the reduced density operator of L sites and
successive applications of ~T to the last L� 1 sites gener-
ates larger and larger parts of the chain. For infinite sys-
tems these states form a subset of the FCS where now
D � d�L�1�; i.e., the scale at which saturation sets in
determines the ancillary dimension.
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