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We show that a biased quantum coin flip (QCF) cannot provide the performance of a black-boxed
biased coin flip, if it satisfies some fidelity conditions. Although such a QCF satisfies the security
conditions of a biased coin flip, it does not realize the ideal functionality and, therefore, does not satisfy
the demands for universally composable security. Moreover, through a comparison within a small
restricted bias range, we show that an arbitrary QCF is distinguishable from a black-boxed coin flip
unless it is unbiased on both sides of parties against insensitive cheating. We also point out the difficulty in
developing cheat-sensitive quantum bit commitment in terms of the uncomposability of a QCF.
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Consider Alice and Bob who have just divorced. They
agree to flip a coin to decide who gets their car, but they
live in different cities. How do they flip a coin by tele-
phone? This is a well-known introduction to a coin flip [1],
which is now an important cryptographic primitive on a
communication network. Another important primitive is
bit commitment (BC). The purpose of BC is to realize the
scenario in which Alice commits to a bit (b) and later she
reveals it; this is done such that Bob cannot know b until
Alice reveals it, and she must reveal b as it is. A fair coin
flip is realized by using secure BC.

An effort was made to construct unconditionally secure
quantum BC (QBC), but unfortunately it was shown that
all previously proposed QBC protocols are broken by the
so-called entanglement attack [2]. After controversial dis-
cussions, it was then generally accepted that uncondition-
ally secure QBC is impossible [3]. It was also proved that a
perfectly fair quantum coin flip (QCF) is impossible [4–7].

Fortunately, quantum mechanics enables biased coin
flipping [6,8–11]. In a biased QCF, if both Alice and Bob
are honest, the outcome is either 0 or 1, each with proba-
bility 1=2. A dishonest party can cheat to bias the proba-
bility to 1=2� �, but it is ensured that the bias satisfies
j�j< 1=2; so a dishonest party cannot fully control the
outcome. Moreover, when a dishonest party tries to largely
bias the probability, an honest party sometimes obtains the
outcome ‘‘reject,’’ which identifies the presence of cheat-
ing. In this Letter, however, we only consider insensitive
cheating such that the outcome reject never occurs. Even
through insensitive cheating, a dishonest party can gener-
ally bias the probability, whose maximum (or minimum) is
called the threshold for cheat sensitivity [9].

On the other hand, let us imagine ideal biased coin
flipping such that a black box outputs a common random
bit to both parties. A dishonest party can bias the proba-
bility of the outcome but can do nothing else because the
party cannot touch the inside of the box at all. A biased
QCF, at first glance, realizes the black-boxed coin flip,
because it is ensured by the laws of physics that the bias

range is limited to j�j< 1=2 against all possible operations
for cheating.

In this Letter, however, we show that a biased QCF
generally does not provide the performance of a black-
boxed biased coin flip, when it is used to resolve a quantum
dilemma. Although such a QCF satisfies the security con-
ditions of a biased coin flip, it does not realize the ideal
functionality. This warns that, if a QCF is combined with
another quantum cryptographic protocol, an unexpected
security hole will occur.

Now, let us introduce a quantum dilemma where, in some
sense, the car in the previous dilemma concerning divorce
is replaced with a fully quantum object: an entangled state.
Suppose that Alice is required to send half of a maximally
entangled state to Bob. However, Bob doubts whether she
sends the entangled state honestly. On the other hand, dis-
honest Bob sometimes destroys the shared entangle-
ment and Alice worries about this. Later, Bob wishes to
confirm that Alice has honestly sent the entangled state,
and Alice wishes to confirm that the entanglement has been
maintained safely. Therefore, both wish to get the whole
state in his or her hand, because the entanglement cannot
be evaluated from each half of the state (the situation is
analogous to quantum bit escrow [8] as we will discuss
later). Since both wishes cannot be satisfied simulta-
neously, let us introduce a coin flip to resolve this dilemma,
and thus consider the following protocol:

Protocol 1 (sharing and maintaining entanglement).
Stage 1 (sharing).—Alice prepares j�iAB � �j00i�

j11i�=
���
2
p

and sends the B qubit to Bob. This maximal
entanglement is to be shared and maintained.

Stage 2 (coin flip).—Alice and Bob execute a coin
flipping subprotocol. If the output of the subprotocol is 0
(1), Alice (Bob) loses the coin flip.

Stage 3 (verification).—The winner of the coin flip ob-
tains both A and B qubits and checks whether or not the
state of the AB qubits is j�i by a projective measurement.
If the state is not j�i, the party detects the cheating of the
other party with nonzero probability.
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Suppose that Alice is dishonest and sends a partially
entangled state j��a�iAB �

���
a
p
j00i �

������������
1� a
p

j11i (1=2<
a � 1) instead of j�i in stage 1. Let Pd be the probability
that Bob detects this cheating. The performance of the
protocol is characterized by the minimal value of Pd for
a given a. Let us consider the case where a black-boxed
coin flip is used in stage 2. The allowable maximal (mini-
mal) bias of the probability of the outcome 0 is �max (�min)
and �min < 0< �max. Exploiting this controllable bias
range, Alice tries to decrease Pd. However, as proved later,
the best strategy is to constantly bias the probability to
1=2� �min, and to send the A qubit as it is in stage 3, when
she loses the coin flip. Namely,

 Pd � Pbox
d � �1=2� �min��1=2�

������������������
a�1� a�

p
�: (1)

Our concern is whether or not a QCF can provide the
same performance. To investigate this, let us recall a
unitary model of a QCF [6,7], where all classical commu-
nication is replaced by quantum communication and all
measurements are postponed until the end of the protocol.
We can thus assume that Alice or Bob’s operation in each
round is a unitary transformation. Following the model in
[6], let j inii be an initial state of the protocol. Alice first
appliesU1 to her own qubits and sends some qubits to Bob,
and then Bob applies U2 and sends some qubits to Alice.
They repeat this, and the final state after all the rounds is
j fini � �	 	 	U3U2U1�j inii. Alice and Bob then measure
j fini to obtain the outcome. When both are honest, they

can obtain 0 or 1 with probability 1=2, and so j fini is
decomposed such that j fini � j 0i � j 1i, where j ci is a
part of leading to the outcome c, h 0j 1i � 0, and k  c k2

�1=2. Moreover, since both must know the outcome cer-
tainty, F�%X;0;%X;1��0, where F�%;�� � �tr

���������������������
%1=2�%1=2

q
�2

is the fidelity and %X;c is the normalized reduced state of
j ci for the party X � A, B [6].

Let �max be the possible maximal bias for the outcome 0
of this QCF, which is achieved if Alice applies U0i instead
ofUi. The final state is then j 0fini � �	 	 	U

0
3U2U

0
1�j inii �

j 00i � j 
0
1i, where h 00j 

0
1i � 0 and k  00 k

2� 1=2� �max.
Moreover, %0B;c, which is the reduced state of j 0ci, must not
be conclusively distinguished from %B;c by Bob so that the
cheating is insensitive [hence supp�%0B;c� 
 supp�%B;c�
where supp�%� denotes the support space of %]. Since
Alice must know the outcome certainty, F�%0A;0; %

0
A;1� �

0; otherwise the cheating is sensitive due to the disagree-
ment of their outcomes. Likewise, let �min be the minimal
bias that is achieved by U00i . The corresponding final state,
the reduced state, and so on, are also indicated by the
double prime. These satisfy the same conditions as in the
�max case, except k  000 k

2� 1=2� �min.
Now, let us consider Alice’s cheating strategy for pro-

tocol 1. In the QCF subprotocol executed in stage 2, she
applies the controlled unitary transformations

 Oi � j0ih0jA �U
00
i � j1ih1jA �U

0
i (2)

to j��a�iAB � j inii. The whole state after all the rounds of
the QCF subprotocol is

 ���
a
p
j00iAB � �j 

00
0 i � j 

00
1 i� �

������������
1� a
p

j11iAB � �j 
0
0i � j 

0
1i� �

���
a
p
j00iAB � j 

00
0 i �

������������
1� a
p

j11iAB � j 
0
0i

�
���
a
p
j00iAB � j 

00
1 i �

������������
1� a
p

j11iAB � j 
0
1i: (3)

The first two and the last two terms in Eq. (3) lead to the
outcomes 0 and 1, respectively. Since Bob’s reduced state
of the system employed for the QCF is a%00B;c � �1�
a�%0B;c for the outcome c, and supp�%00B;c�, supp�%0B;c� 

supp�%B;c�, he knows the outcome certainty by a regular
measurement. Alice’s reduced state is aj0ih0jA � %00A;c �
�1� a�j1ih1jA � %0A;c, and she can obtain the outcome cer-
tainty using the projector j0ih0jA ��00

c � j1ih1jA ��0
c,

where �0
c (�00

c ) distinguishes %0A;0 and %0A;1 (%00A;0 and
%00A;1). Suppose that the outcome of the QCF is 0; the state
of the AB qubits will be checked by Bob in stage 3. Before
Alice sends the A qubit to Bob, she applies j0ih0jA � I �
j1ih1jA � V, where V maximizes the overlap between j 000 i
and j 00i such that jh 000 jVj 

0
0ij

2 �k  000 k
2k  00 k

2

F�%0B;0; %
00
B;0� [12]. Through this procedure, the whole state

becomes j�0i�
���
a
p
j00iAB�j 

00
0 i�

�����������
1�a
p

j11iAB�Vj 
0
0i,

and Pd in this strategy is
 

PQd � tr�j�0ih�0j�I � j�ih�j�AB

� 1
2�a�

1
2� �min� � �1� a��

1
2� �max�

� �a�1� a��12� �min��
1
2� �max�F

1=2; (4)

where F � F�%0B;0; %
00
B;0�. Comparing Eqs. (1) and (4), it is

found that PQd <P
box
d if 1> a> �r� 1�2=�4�

������
rF
p

� 1�2 �
�r� 1�2 and

 F > 1=r � �1� 2�min�=�1� 2�max�: (5)

This result shows that, if a QCF has the property of Eq. (5),
there exists a finite range of a in which PQd < Pbox

d .
Therefore, it is concluded that such a QCF cannot provide
the performance of a black-boxed coin flip.

The point of the above cheating strategy is that it is
possible to superpose two biasing operations U0i and U00i .
This enables Alice to correlate the state of the AB qubits
with the outcome of the QCF such that the state is more
entangled than j��a�iAB whenever Alice loses the QCF
(and thus Pd decreases). For this purpose, Alice utilizes the
difference of k  000 k and k  00 k (i.e., the difference of �max

and �min). However, this procedure has created undesired
entanglement between the AB qubits and the system em-
ployed for the QCF, and so Alice needs to disentangle
them; otherwise the entanglement of the AB qubits will
be washed out by the undesired entanglement. This is done
by increasing the overlap between j 00i and j 000 i. Note that
the disentangling process is incomplete (unless F � 1),
and, as a result, the state of the AB qubits is a mixed state.
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To further investigate the difference between a QCF and
a black-boxed coin flip, let us introduce the following bi-
asing operation: Suppose that Alice has a local ancilla qu-
bit and she prepares the initial state j inii � �

������������
1� x
p

j0ia ����
x
p
j1ia� for the QCF, where the subscript a denotes the

ancilla qubit. Then, if she applies ~Ui�Ui�j0ih0ja�U
00
i �

j1ih1ja to the initial state, the QCF is biased by x�min.
Moreover, when the outcome is 0, Bob’s reduced state is
~%B;0 � %B;0 � x�%00B;0 � %B;0�. Now, let us imagine a spe-
cial circumstance where Alice’s ability is restricted such
that she can only use ~Ui for biasing the QCF (the point is
that she cannot directly employU00i ). As a result, the bias of
the QCF is restricted within �x�min; 0, and, therefore, it
may be natural to compare it with the black-boxed coin flip
with the same bias range. Then, if Alice adopts the cheat-
ing strategy like Eq. (2), whereUi and ~Ui are superposed as
Oi � j0ih0jA � ~Ui � j1ih1jA �Ui to decrease Pd, we have
Eq. (5) in which �max and �min are replaced by 0 and x�min,
respectively; so PQd <P

box
d if F�%B;0; ~%B;0�>1�2x�min.

However, this fidelity condition is always satisfied for x!
0 because F�%B;0; ~%B;0��1�O�x2�. The same discussion
holds if the bias is restricted within �0; x�max. In this way,
an arbitrary QCF is distinguishable from a black-boxed
coin flip (as PQd < Pbox

d ) unless the QCF is unbiased against
insensitive cheating.

To see these results graphically, the following two
bounds are plotted in Fig. 1:

 

�I� F���> 1=�1� 2�� for �min � 0 and �� x�max � 0;

�II� F���> 1� 2� for �max � 0 and �� x�min � 0:

If the fidelity F of the QCF, whose bias is forcedly re-
stricted within (I) �0; � and (II) ��; 0, is located outside the
gray region, the QCF is distinguishable from the black-
boxed coin flip with the same bias range.

All of the above discussions hold when Bob is dishonest,
if we assume that Bob’s dishonest action in stage 1 is to
perform the following positive operator valued measure-
ment (POVM) of the B qubit:

 M0 �
���
a
p
j0ih0j �

������������
1� a
p

j1ih1j;

M1 �
������������
1� a
p

j0ih0j �
���
a
p
j1ih1j;

(6)

where My0M0 �M
y
1M1 � 1B. Depending on the outcome

of the POVM, the postmeasured state becomes j��a�iAB or
j��1� a�iAB, each with probability 1=2. He then tries to
decrease Pd. For j��a�i, the same cheating strategy as used
with dishonest Alice is applicable. This is the case for
j��1� a�i, if the role of j0iB and j1iB is exchanged in
the controlled operations of the cheating strategy. Then, we
have the same bound for F � F�%0A;1; %

00
A;1�, but �max and

�min must be read as those for the outcome 1 of the QCF.
This implies that a QCF must be unbiased on both Alice
and Bob’s sides simultaneously, so that it is indistinguish-
able from a black-boxed coin flip.

So, let us now prove Eq. (1). The general action of
dishonest Alice when deciding on the bias of a black-boxed
coin flip is described by a POVM fL�g of the A qubit
(
R
d�Ly�L� � 1A). The probability of the outcome 0 is

then biased to 1
2� �, and the state of the AB qubits will

be checked by Bob with this probability. The singlet frac-
tion F ��� � h�j�j�i is bounded as F ��� � �tr��
NB���=2, where NB��� is negativity [13] (the subscript
denotes the partial transposition with respect to the B
qubit). Since NB is an entanglement monotone [14], the
average cannot be increased by the local operation of the
POVM. Hence,
 

Pd �
Z �max

�min

d�
�
1

2
� �

�
tr�L�j��a�ih��a�jL

y
� �I � j�ih�j�

�
1

2

�
1

2
� �min

��
1�

Z
d�NB�L�j��a�ih��a�jL

y
� �

�

�
1

2

�
1

2
� �min

�
�1� NB�j��a�i�; (7)

and we have Eq. (1), because NB�j��a�i� � 2
������������������
a�1� a�

p
.

So far, we have focused on the comparison through Pd.
Now, we concentrate on a case where Pd � 0; the proba-
bility of detecting cheating is strictly zero, and so the state
of the AB qubits must be precisely j�i when it is checked
in stage 3. The performance of protocol 1 is then charac-
terized by the maximal allowed value of a for a dishonest
party. Suppose again that Alice is dishonest. For a black-
boxed coin flip, it is found from Eq. (1) that a � 1=2 must
hold; so she cannot cheat at all under Pd � 0, as expected.
For a QCF, however, it is found from Eq. (4) that PQd � 0
even for a � 1=2� ��max � �min�=�2�1� �max � �min�>
1=2 if F � 1. This occurs for an arbitrary pair of biasing
operations as far as F � 1 for the pair. So, by replacing
�max and �min with �0 and �00, it is found that Alice can
successfully cheat if the QCF satisfies

 �a � max
�0;�00;F�1

��0 � �00�=�2�1� �0 � �00�> 0; (8)

where the maximization is taken over all the pairs of the
two biasing operations subject to F�%0B;0; %

00
B;0� � 1. Such a

QCF also cannot provide the performance of a black-boxed
coin flip, and even allows the cheating that is completely

0−1/2 1/2

1 F

ε

[8]

[11]

1/2

[6]

(I)(II)

FIG. 1 (color online). Bound for fidelity (F) as a function of
bias (�). If a QCF is located outside the gray region, it is
distinguishable from a black-boxed coin flip. The fidelity for
the QCF protocols proposed in [6,8,11] is also plotted, where we
assumed dishonest Bob.
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prohibited by a black-boxed coin flip. Note that the same
discussion holds again for dishonest Bob.

As a simple example, let us analyze the following pro-
tocol [15] (this is not a true QCF because the probability of
the outcome is not 1=2 even if both are honest).

Protocol 2 (QCF-like).—Alice prepares j�iCD and
sends the D qubit to Bob. He optionally checks j�iCD
(getting the C qubit). If he uses the option, this protocol
automatically outputs 1. Otherwise, he measures the D
qubit in the fj0i; j1ig basis and sends the result to Alice,
and she confirms the validity by measuring the C qubit.
This protocol then outputs the measurement result.

In this protocol, it is confirmed that F�%0A;1; %
00
A;1� � 1 for

Bob’s two biasing operations of (i) he always uses the
option (�0 � 1=2), and (ii) he measures the D qubit, and
if the result is 1, he uses the option (�00 � 0). Hence, we
have �a � 1=6 and a � 2=3 from Eq. (8). On the other
hand, it can be shown that a � 2=3 for Bob’s general
action [16]. Therefore, it is found that the cheating strategy
considered in this Letter has optimally maximized a under
Pd � 0. This is the case for the 3-round protocol in [8]
(a � cos�8 ) and for the optimal 3-round protocol in [6]
(a � 3=4), for which we assumed dishonest Bob.

As mentioned before, the situation considered in this
Letter is analogous to quantum bit escrow [8], which is a
weak variant of QBC such that either Alice or Bob can
detect cheating with nonzero probability.

Protocol 3 (quantum bit escrow).
Stage 1 (commitment).—To commit to b � 0 (1), Alice

prepares either j0iB or j�iB (j1iB or j�iB), each with
probability 1=2, which is written as j�bxi where x denotes
the encoding basis. She then sends the B qubit to Bob.

Stage 2 (opening).—Alice reveals b.
Stage 3 (verification).—Either Alice or Bob obtains the

B qubit and checks whether or not it is j�bxi to detect
cheating (Alice reveals x if Bob checks the state).

The question of whether or not it is possible to use a
biased QCF for the purpose of deciding which party will
check the B qubit in stage 3 was raised in [8]. If this is so,
the resultant protocol is cheat-sensitive QBC (CSQBC)
[8,15], which enables both to detect cheating, albeit with
smaller nonzero probability.

However, since the resultant CSQBC has the same
structure as in protocol 1, it struggles with the difference
between a QCF and a black-boxed coin flip. For example,
if �a > 0, dishonest Bob can steal partial information
about b before the opening stage by a POVM as in
Eq. (6) [16]. Alice cannot detect his cheating because he
can precisely recover j�bxi from a state collapsed by the
POVM whenever he loses the QCF, as he recovers j�i from
j��a�i or j��1� a�i. Likewise, if �a > 0, dishonest Alice
can change the probability of revealing b � 0 in the open-
ing stage. Therefore, a QCF that is combined with bit
escrow should not satisfy Eq. (8) on both sides of parties.
Unfortunately, this is not the case in the example of
CSQBC suggested in [8], and even in [15]. We described

the cheating method for those in [16]. Note that, as far as
we know, an explicit protocol for secure CSQBC has not
been found yet [16], contrary to the widespread belief that
CSQBC is possible.

To summarize, we showed that a QCF cannot provide
the performance of a black-boxed coin flip, if it satisfies the
fidelity conditions of Eqs. (5) or (8). Such a QCF obviously
does not fulfill the conditions for universally composable
(UC) security, the demands for ensuring the security of a
cryptographic primitive regardless of how it is used in
applications [17]. This result is quite a contrast to quantum
key distribution (QKD), where a QKD protocol is auto-
matically UC secure if it satisfies the general security
conditions [18]. Moreover, through a comparison within
a small restricted bias range, we showed that an arbitrary
QCF is distinguishable from a black-boxed coin flip unless
it is unbiased on both sides of parties against insensitive
cheating, i.e., unless it is a cheat-sensitive unbiased QCF.
Finally, we discussed the relation to CSQBC constructed
from bit escrow and a QCF, and pointed out the difficulty in
developing secure CSQBC in terms of the uncomposability
condition of Eq. (8). We hope these results shed some light
on the important open problem of whether or not quantum
mechanics enables cheat-sensitive bit commitment and
cheat-sensitive unbiased coin flipping.
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