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We present a molecular dynamics study of a generic model for single polymer diffusion on surfaces,
which have variable atomic-scale corrugation but no artificial, impenetrable obstacles. The diffusion
coefficient D scales as D / N�3=2 with the degree of polymerization N for strongly adsorbed, linear
polymers on solid substrates in good solvents. Weaker scaling, i.e., D / N�1, is found if (i) the substrate is
a fluid, e.g., a membrane, (ii) the polymer is a ring polymer, and (iii) the polymer is commensurate with
the substrate. In poor solvents, diffusion on solids slows exponentially fast with N. Reptation is not
observed in any of the simulations presented here.
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The surface diffusion of macromolecules has attracted
increased attention within the last decade [1–5]. These
studies are motivated in part by the desire to obtain a
fundamental understanding of the diffusion of linear mac-
romolecules on surfaces, including that of DNA [6] and
phospholipids [7,8] on lipid bilayers. Further motivation
for these studies comes from existing or potential techno-
logical applications of adsorbed polymers such as they
occur for surface coating, adhesives, and tribology [9].
Progress in measuring molecular diffusion coefficients of
adsorbed single polymers [2,6] or of polymers in thin films
[10] was made owing to the application of fluorescence
spectroscopy. However, despite these advances, it is not yet
possible to extract direct experimental information on
atomic-scale structure and dynamics of polymers. For
example, it is not possible to ascertain whether or not
polymers are reptating.

A key question in adsorbed single polymer systems is
how quantities such as the lateral diffusion coefficient D,
the end-to-end chain relaxation time �, and the in-plane
radius of gyration Rg scale with the degree of polymeriza-
tion N. While the scaling laws for the structural properties
appear to be well established, e.g., Rg / N� with � � 0:75
[3,6,9,11] for planar geometries in good solvents, there is
conflicting information on the dynamical exponents, in
particular, in the D / N�y relation. Two experiments
found y � 1 [6,7] for polymers adsorbed on lipid bilayers,
while another study identified y � 3=2 for a polymer
adsorbed on a fused silica surface [2].

Because of the difficulties associated with the analytical
description of polymer dynamics, simulation has become
the method of choice [1,3–5,11,12] to ascertain what
determines the dynamical exponent y. Depending on the
model and the simulation method, different results are
obtained, e.g., 1=N in a Monte Carlo (MC) study of a
bead-spring model on a smooth surface [11], a crossover
from D / 1=N to 1=N3=2 depending on the concentration
of random obstacles on the surface in a molecular dynam-
ics (MD) simulation [3], a crossover from an apparent

dynamical exponent y � 1:7 for N � 150 to y � 3=2 for
larger N in a MC simulation of a two-dimensional bond-
fluctuation model where impenetrable obstacles were
present on the surface [1]. Most recently, an MD study
[5] of a bead-spring model found that D / 1=N3=2 for
surfaces that were called ‘‘solid’’ and either had impene-
trable barriers or ‘‘sticking points,’’ while D / 1=N was
identified on so-called ‘‘fluids,’’ which, however, were
sometimes modeled with the help of obstacles of small,
albeit finite concentration, surface roughness, and density
modulations. Finally, a polymer lattice model on a hex-
agonal lattice without obstacles was suggestive of the law
D / �aN � bN2��1, where a and b were system-
dependent coefficients [12]. In many of the simulations,
it was argued that reptation dynamics occur [3,5,12].

It is surprising that none of the computational studies
discussed in the previous paragraph investigated what we
consider to be the most generic model for polymer diffu-
sion on surfaces, namely, a simple bead-spring chain ad-
sorbed onto a simple but corrugated substrate [13] without
diverging energy barriers, such as is obtained when a
surface is modeled with discrete atoms. Corrugation (or
more generally speaking, breaking in-plane translational
Galilean invariance) is a necessary ‘‘ingredient’’ to exert
shear forces. Lattice models usually neglect the way in
which the substrate breaks translational invariance, and it is
thus not clear if one can relate their predictions to experi-
ments. In many models, where translational invariance is
broken, it is typically done by introducing energy barriers
having infinite height. One may argue that these obstacles
are somewhat artificial and thus do not necessarily produce
the generic features of smooth surfaces which have only
atomic-scale roughness, as is the case for fused silica
surfaces.

In order to avoid artifacts induced by infinitely large
energy barriers and/or smooth walls, our analysis of single
polymer diffusion shall be based on a model that includes
an atomically flat but discrete surface. Because of the
discreteness of the surface, finite (free energy) corrugation
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barriers which prevent the polymers from free lateral slid-
ing are present. For fluids, no static barriers or lateral
heterogeneity exists.

We have shown previously that (static) surface corruga-
tion appears to be a key factor in determining the dynamics
of polymers at interfaces [13]. Simulating generic bead-
spring polymers moving on surfaces that have only atomic-
scale corrugation, we were able to reproduce the perhaps
counterintuitive experiments by Zhao and Granick [10]:
They had found that D first increased with deposition
concentration � and then suddenly dropped to a small
value at a threshold concentration ��. Our simulations
suggested that the sudden drop in D may be due to a
structural transition from single to double layers and that
the double layers have more geometric flexibility to lock
into the substrate’s registry, which increases energy bar-
riers and thus reduces lateral mobility at large � [13]. In
comparison to other work where either an ideally flat
surface or a strictly two-dimensional polymer embedded
in a plane containing random obstacles was used, we
believe that our scenario mimics the generic features of
the experiments more closely. Therefore, it would be in-
teresting to revisit single polymer diffusion as a function of
N with the same model that reproduced the nonmonotonic
behavior of D with �. We will also investigate the effect of
molecular structure (linear vs ring polymers) and initial
conditions (flat adsorption vs crossings).

In this work, all simulations are based on the same
empirical bead-spring model [14] as for our study of
D��� [13]. Monomers interact with each other and with
surface atoms through truncated Lennard-Jones (LJ) po-
tentials, which are all identical except in good solvent
conditions, when the cutoff radius for the monomer-
monomer LJ potential is reduced from twice to one times
21=6 times the LJ radius. As in our previous work, the
thermal energy is set to half the LJ energy unit.
Temperature is imposed through a Langevin thermostat
that acts only on the motion normal to the surface. The
coupling strength of the thermostat was varied by a factor
of 10 without changing the results in any discernible fash-
ion. We did not include explicit solvent in order to empha-
size the damping of the polymers due to wall friction. Since
our calculations are in thermal equilibrium and thus in
linear response, damping due to wall friction and damping
due to hydrodynamic interactions are linearly additive.

The configurations are equilibrated for a few 108 MD
time steps (depending on the chain size) and then obser-
vations are carried out over another 15� 106 MD time
steps; this corresponds to 7:5� 104t0, where t0 is the LJ
time unit. To illustrate our simple, albeit generic model
further, typical equilibrated configurations on solids are
shown in the auxiliary electronic material for both solvent
conditions [15]. In some cases, we also considered ring
polymers, in which case the first and the last monomers are
connected by a covalent bond.

We wish to note that the dynamics of polymers shortly
after deposition appears to be rather interesting, complex,
and of relevance for the long-time dynamics, in particular,
if the surface concentrations are higher than those used in
the current work [13]. The relevance of initial conditions,
however, appears to be less of an issue for single polymer
deposition. For the same interaction potentials, single pol-
ymers, even longer ones, have a much lower propensity to
form double layers or other multilayered structures than
shorter chains at moderate concentrations, say at 50%
surface coverage. For instance, when initial structures are
prepared such that the polymers have single or double
crossings, the crossings become unstable after a few 105

MD time steps within the parameter space investigated
here. These observations motivated us to favor ‘‘flat’’
deposition of the polymers onto the surfaces. Of course,
our initial conditions do not prevent the polymer from
‘‘piling up’’ at long times when the solvent conditions
are poor.

Although the central interest in this Letter is the calcu-
lation of the in-plane diffusion coefficient D, we wish to
point out that we provide evidence in the auxiliary, elec-
tronic material [15] that our model shows the right scaling
for the in-plane radius of gyration. D is obtained by mea-
suring the slope of the centroids’ mean-square displace-
ment at large times. The main part of Fig. 1 summarizes the
most important results for good solvent conditions. The
data for our default system (linear polymer, regular inter-
action between monomers and wall atoms) are consistent
with the power law D / N�3=2 predicted by Azuma and
Takayama [1] and with the experiments on poly(ethylene
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FIG. 1 (color online). Lateral diffusion D�N� as a function of
degree of polymerization N for good solvent and both linear
(triangles) and ring polymers (circles). Results are shown for
different LJ radii �sp that are used for the interaction between
monomers and wall atoms. Large values of �sp result in small
roughness and vice versa. Triangles down, right, and up reflect
high, medium, and small corrugation, respectively. Lines are
guides to the eye. Solid lines (blue and red) indicate an N�3=2

power law, long-dashed (green, red, and black) lines N�1, and
short-dashed (black) lines an N�0:75 power law. Error bars are
about symbol size. Inset: D�N� for linear polymers in a poor
solvent.
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glycol) (PEG) near a fused silica surface [2]. It is surprising
that introducing impenetrable barriers as done in Ref. [1]
appears to have the same effect on the D�N� scaling as
finite barriers that can be overcome by thermal fluctuation.
We certainly feel that our model is not only simpler, but as
argued above, more general and natural than previously
used models to describe the dynamics. Unfortunately, our
results appear to be in partial contradiction to those of Qian
et al. [5], who found that roughness and density modula-
tion near the surface is not necessarily sufficient to obtain
y � 3=2.

The result for our default system and its apparent contra-
diction with Ref. [5] invokes the question of whether a
crossover to linear scaling would be found if N were
distinctly larger than those values investigated here. An
argument for this type of crossover would be that fractions
of the polymers may move as uncorrelated domains and
thus lead to Rouse dynamics at large values of N. We feel
that this argument should be correct (at least) for dimen-
sions equal to or above the upper critical dimension of the
self-avoiding walk, i.e., for d 	 4. However, investigating
this issue in dimension four or above is beyond the scope of
this Letter.

In order to investigate the possibility of a crossover in
two-dimensional surface diffusion, the roughness of the
walls was reduced. A reduced roughness should reduce the
pinning and thus make the substrate more fluidlike.
Roughness was reduced by increasing the LJ radius for
the interaction between wall atoms and monomers, �sp,
while keeping all other terms constant. This way the am-
plitude of the roughness is changed without altering the
substrate’s lattice spacing. When roughness is made very
small, D / N�1 is observed within the full range of N,
which is to be expected for the diffusion on a fluid substrate
(see discussion below). For intermediate roughness, a
crossover from 1=N to 1=N3=2 scaling is observed with
increasing N, in contradiction to the argument that the
polymer should decompose into units that move in an
uncorrelated fashion. Because of the observation of this
crossover, we expectD / N�3=2 at largeN for any strongly
adhering surface with finite, static barriers. Since the en-
ergy barriers are finite, no reptation is required for the
polymers to diffuse on the surface. Indeed, when looking
at movies of the MD simulations (see also a series of
snapshots in the auxiliary electronic material) no indica-
tion of reptation can be identified [15].

An ideal flat surface (plus a linear-response damping
acting on the monomers in the lateral direction due to
collision with atoms in the substrate) automatically induces
a damping that increases with N so that D should scale as
1=N or potentially faster if additional dissipation channels
are present. In our simulations, we neither imposed exter-
nal damping within the lateral direction nor did we include
hydrodynamic interactions. However, due to the substrate’s
residual roughness, coupling of longitudinal, transverse,

and normal motion allows dissipating the kinetic energy
associated with the polymer’s in-plane center-of-mass mo-
tion to the normal degrees of freedom. This effect is suf-
ficient to reproduce the same effect as hydrodynamic in-
teraction with the substrate as long as the chain is fully ad-
sorbed. This is why we abstained from incorporating hy-
drodynamic interactions directly and why we can observe
an apparent exponent of y � 1 at small N and small rough-
ness. A damping linear inN also occurs on flat substrates if
the interaction between substrate and polymers is modeled
with a dissipative-particle dynamics thermostat [5].

We can now explain why experiments (as well as some
simulations) sometimes indicate Rouse dynamics (y �
1:0) instead of y � 3=2. The experiments favoring y �
1:0 were done on polymers adsorbed onto lipid bilayers
[6,7]. These, however, are known to be in a fluid state. The
polymers are thus ‘‘rubbing’’ against an on average un-
corrugated, homogeneous fluid rather than against a solid
with static corrugation, so that the damping (i.e., the in-
verse diffusion constant) of the polymers centroid is simply
proportional to the number of monomers in contact with
the fluid. For strongly adsorbed polymers the argument
naturally leads to Rouse dynamics because each monomer
is in contact with the lipid bilayer. The same argument
explains why lattice models which do not explicitly in-
clude barriers find D / 1=N. MC dynamics are intrinsi-
cally overdamped, but the absence of any substrate-
induced barrier does not add any (additional) resistance
to sliding. The experiment suggesting that y � 3=2 was
performed on a solid substrate. Our simulations indicate
that finite, static (free) energy barriers, as they exist on
solid substrates, produce dynamics with y � 3=2, at least if
N is made sufficiently large. While this conclusion sup-
ports a similar conclusion by Qian et al. [5], we emphasize
that our fluids do not have any type of heterogeneity, while
our solids neither require impenetrable barriers nor stick-
ing points.

The observation of a crossover from y � 1 to y � 3=2
for intermediate roughness suggests that the motions of the
monomer units are highly correlated throughout the full
chain (as argued above, if one could decompose the poly-
mer into uncorrelated units, 1=N scaling should be ob-
served). Thus, imposing a topological constraint, such as
constraining the polymer to form closed rings, should have
the potential to alter the dynamical exponent y, even
though static properties such as the exponent �may remain
unaltered. When simulating ring polymers, we indeed
find a different value for y, i.e., a crossover from y �
0:75 for short chains (N � 70) to y � 1 for long chains.
The damping for long chains is probably due to the viscous
damping force, which is an unavoidable consequence of
the transverse-normal coupling discussed in a preceding
paragraph.

In order to reduce the correlation between different
monomer segments, we also investigated polymers that
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were made locally commensurate with the substrate; i.e.,
the ideal bond length between two adjacent monomers in
the backbone of the chain was made identical to the spac-
ing between two potential energy minima of the substrate.
Polymer segments can now locally rearrange without
changing the net energy of the polymer. It had been argued
that one possible reason for the N�3=2 power law is that
substrate-mediated forces may be correlated [2]. Our re-
sults are consistent with this conjecture: For commensurate
polymers, D vanishes linearly with N; see [15] for more
details. A very long commensurate chain thus diffuses
faster than an incommensurate chain despite the better
local locking of the commensurate chain.

As the chain’s conformation in good and bad solvents is
quite distinct, one may also expect different scaling laws
D�N� for good and poor solvent conditions. In fact, in the
range of degrees of polymerization investigated, D de-
creases exponentially fast with N in bad solvents as can
be seen in the inset of Fig. 1. There are two key factors that
contribute to the slow dynamics in poor solvents: First,
denser structures lead to more highly correlated motion of
the monomers; i.e., in poor solvents, the longer the chain,
the more monomers have to move at a given time when
one monomer jumps from one favorable site on the sub-
strate to the next one. Second, as the bonds between ad-
jacent monomers in the polymer do not have to be quasi-
parallel to the surface as soon as more than a single layer is
formed, the polymers have more geometric flexibility to
lock into the registry of the substrate. This locking then
leads to exponentially increased barriers to diffusion. A
similar argument was held responsible for the nonmono-
tonic dependence of D on surface coverage � [13], as
mentioned above.

So far, we have considered only the chain’s center-of-
mass motion. It is worth noting that the internal relaxation
dynamics follow the trends known from the bulk [16]; in

particular, the relaxation time of the end-to-end distance is
inversely proportional to the chain’s centroid diffusion
constant. Specifically, for all simulations presented here
we find that the equation � � R2

g=2dD holds within a
stochastic error of about 6% (see Fig. 2). This shows that
the polymers do not translate as rigid units.

In conclusion, our MD simulations support the observa-
tion that the exponent in the relation D / N�y is mainly
determined by the phase of the substrate [5]; i.e., y � 1
for fluids substrates and y � 3=2 for solid substrates.
However, we achieved these results by using discrete, solid
surfaces with finite energy barriers and without sticking
points, while our fluids did not have (artificial) heteroge-
neities. We could also show that strongly adsorbed ring
polymers and locally commensurable polymers have
weaker scaling with y � 1 and, moreover, predict an ex-
ponential decrease in D for poor solvent conditions.
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FIG. 2 (color online). Relation between R2
g=D and end-to-end

relaxation time � for the various models. Symbols are consistent
with Fig. 1. For ring polymers, � is the relaxation time related to
the motion of an arbitrary monomer with index n and the one
with index n� N=2. The solid line has slope four and zero
intercept.
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