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A methodology for discovering the mechanisms and dynamics of protein clustering on solid surfaces is
presented. In situ atomic force microscopy images are quantitatively compared to Monte Carlo simula-
tions using cluster statistics to differentiate various models. We study lysozyme adsorption on mica as a
model system and find that all surface-supported clusters are mobile, not just the monomers, with
diffusion constant inversely related to cluster size. The surface monomer diffusion constant is measured to
be D; ~9 X 107!® cm?s™!, such a low value being difficult to measure using other techniques.
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Protein binding onto solid surfaces is a key process in
many biotechnological systems [1], from the design of
biosensors to the biocompatibility of implants [2]. The
conformation of the proteins on a substrate is crucial for
their activity [3]. The arrangement of the proteins across
the substrate deserves particular attention, since it provides
mesoscale morphology for interactions with tissue [4] and
also influences conformation [5]. If we understand the
mechanisms by which proteins cluster together on the
surface, we might hope to influence the growth of the
protein layers and hence engineer bioactive surfaces with
tailored properties.

Surprisingly, the mechanisms and dynamics of protein
aggregation on solid substrates has not been studied in
much detail prior to this Letter. Random sequential adsorp-
tion (RSA) models are widely assumed to be adequate,
whereby surface diffusion is at best limited to cluster
rearrangements with no long-range center-of-mass diffu-
sion [6]. However atomic force microscopy (AFM) images
repeatedly show clustering of proteins, which indicate that
such models are inadequate [7-9]. In contradiction, the
kinetics of protein adsorption are often modeled using
Langmuir kinetics, where it is implicitly assumed that in
late stage adsorption the proteins have clustered so that all
the free surface is available for further adsorption rather
than being “‘jammed‘ as in the RSA models [10]. While
some authors have attempted to account for surface diffu-
sion and lateral interactions in protein adsorption models
[11,12], detailed comparisons to experimental data are
lacking. Furthermore, a methodology to enable a quantita-
tive understanding of both the mechanisms and the rates of
diffusion and clustering on a solid substrate has not been
established for this field until now.

In this Letter we shall adopt the powerful methodology
used in island nucleation and growth studies of condensed
matter systems, where growth mechanisms and relevant
diffusion rates have been quantified using the statistical
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properties of grown island arrays [13,14]. We study lyso-
zyme (a small, robust globular protein) clustering on mica,
followed in situ by AFM, and use statistical analysis of the
images to make quantitative comparisons to Monte Carlo
simulations. Surprisingly, we find that the lysozyme clus-
ters are significantly mobile on the substrate, a result quite
at odds with any previous quantitative model for protein
adsorption at a solid surface.

Figure 1 shows typical in situ images of the lysozyme
clusters taken after different exposure times using tapping-
mode AFM. The lysozyme (L6876, Sigma-Aldrich) is
deposited onto freshly cleaved mica from a 3 mm depth
of solution under stagnant conditions, at a concentration of
1 wg/mL in pH4/ionic strength 0.02 M buffer at 22 °C.
The saturation fractional substrate coverage is estimated to
be 0.36 (see below). We performed tests to establish that
imaging did not influence the adsorption of the protein and
the areas shown are representative of the patterns we
repeatedly observed under these and similar conditions.
We have also compared images from supersharp and nor-
mal tips and conclude that tip-convolution effects are not
important in this study. One key feature of these images is
that the clusters always remain at one protein height, and
we obtain no evidence for multilayer growth, in agreement
with previous reports [7].

In Fig. 2 we show how the surface coverage by the
lysozyme monotonically increases over time as expected
for irreversible adsorption [7]. Furthermore, its variation is
consistent with solutions of the diffusion equation, using
the uncovered substrate as an adsorbing boundary as in
classic Langmuir kinetics. We find the bulk diffusion con-
stant, D, of the lysozyme in the solution ~107% cm?s™!,
consistent with the literature values for this pH and ionicity
[15]. In Fig. 2 we also show how the coverage dependence
is affected by the adsorption probability onto the bare
substrate. Not all adsorption attempts are necessarily suc-
cessful as the correct orientation of the protein is expected
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FIG. 1 (color online). AFM images (500 nm X 250 nm) of
protein clusters after different exposure times: (a) 74000 s;
(b) 100000 s; (c) 182000 s. The images are not from the
same area but are representative of those taken across the
substrate at the times shown.

to be crucial for its adsorption [16]. In the work that
follows we shall assume that this probability of adsorption
is P = 0.01.

To determine the mechanisms and rates of the cluster
growth, we investigate a range of Monte Carlo simulations.
We start with an RSA model where proteins are deposited
at random onto bare substrate at the time-dependent rate
determined from Fig. 2. The substrate is represented by a
square mesh with lattice spacing of 3 nm to match the size
of the lysozyme. Sites are occupied by single monomers
that do not diffuse, but they can hop to nearest and next-
nearest sites within a given cluster to increase the internal
connectivity. Figure 3(a) shows typical protein arrange-
ments predicted by this model after 100 000 s. As expected,
this RSA model produces very different patterns to those
observed. It is unlikely that direct adsorption from solution
at the edge of existing clusters is strongly preferred over
adsorption at the bare mica due to the negative charge
carried by the mica at this pH and the positive charge on
the lysozyme, and certainly no multilayer growth is ob-
served. We conclude that surface diffusion must be impor-
tant for the clustering [7].

We now include monomer surface diffusion in our mod-
els by allowing free monomers to hop to nearest sites at a
rate v. First we consider the behavior for critical cluster
size i = 1 whereby diffusing monomers must come to-
gether to nucleate a stable, immobile cluster [13,14].
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FIG. 2 (color online). Coverage of the substrate observed in
the AFM experiments against exposure time. The smooth curves
come from a solution of the diffusion equation, assuming trans-
lational symmetry across the system, starting with a uniform
distribution of the lysozyme in solution and a bare adsorbing
substrate. The sticking coefficient onto bare substrate is P = 1.0
and P = 0.01.

Figure 3(b) shows typical cluster arrays grown in this
simulation where the surface diffusion constant of the
monomers D; =9 X 107" cm?s™!. The cluster array
has a degree of regularity in its spatial arrangement, and
in its range of cluster sizes and shapes, which can be
understood in terms of cluster growth inside capture zones
for deposited monomers. These are the Voronoi-type edge
cells also shown in Fig. 3(b); each zone marks the region of
the substrate closer to the adsorbing edge of the resident
cluster than to any other cluster edge [17,18].

The positions of the clusters in the i = 1 model are
determined by the stochastic nucleation events that can
continue through the adsorption process. An alternative
model can be made by considering only growth from
predetermined seeds, possibly pinned to undetected sub-
strate defect sites, thereby establishing unchanging capture
zones at the start of growth [19]. While we do not show
results of this variation here, the statistics of this model are
briefly discussed below.

Next we turn to a similar model but with critical cluster
size i =0 so a diffusing monomer can spontaneously
nucleate a cluster, perhaps following a conformational
change. The image in Fig. 3(c) has been created with the
probability 10~# per monomer hop of spontaneous nuclea-
tion, with i > 0 nucleation suppressed. This image sup-
ports a more favorable comparison to the AFM data,
although there does appear to be more coalescence of the
clusters in the experiment.

We turn now to our final variation of the simulation,
where all clusters are mobile but with a size-dependent
diffusion constant D, = D, /s which varies inversely with
cluster size s (measured in monomers). The clusters diffuse
rigidly without rotation by moving their center-of-mass by
one nearest neighbor lattice spacing [20]. This mechanism
allows for more cluster coalescence as seen in Fig. 3(d),
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FIG. 3. Comparison of simulated cluster arrays at 100000 s:
(a) An RSA model with attractive interaction between mono-
mers; (b) Cluster nucleation and growth model for critical cluster
size i = 1 with Voronoi-type edge cells superposed in gray;
(c) Cluster nucleation and growth model with i=0;
(d) Model with mobile clusters.

where D; = 9 X 10716 cm?s™!, and a consequently better
visual comparison with AFM images.

In order to quantify the comparison between the models
and the AFM images, we examine the cluster size distri-
butions [13,14]. In Fig. 4 we show the size distributions
from AFM images at various times, alongside those from
i =0, i =1, and mobile cluster simulations. The i = 1
distributions follow a singly peaked distribution that is
slightly broader than that of the capture zones due to the
nucleation of new clusters as growth proceeds [17]. For
growth solely from defect sites the cluster sizes will ex-
actly mirror the unchanging distribution of capture zones
for the defects, again yielding a singly peaked distribution
[19]. In contrast, the i = O distributions display a mono-
tonically decreasing form due to the broadening caused by
significant cluster nucleation throughout the growth [21].
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FIG. 4 (color online). Cluster size distributions at time
(a) 10000 s; (b) 80000 s; (c) 180000 s. The abscissa are scaled
to the mean size at each time. The bars are from the AFM
experiments and the lines from the simulations with mobile
clusters, and with critical cluster sizes i =1 and i=0.
Pearson’s correlations have been calculated for each model
distribution in comparison to the AFM data, and in the order
of mobile clusters, i =1 and i = 0 are (a) 0.96, 0.42, 0.85;
(b) 0.86, 0.25, 0.80; (c) 0.97, 0.20, 0.79.

The size distributions from the mobile cluster simulations
are broader still [22] as the mobility disrupts the capture
zones.

The AFM size distributions are in contrast to those of
i =0, 1, particularly at later times in Figs. 4(b) and 4(c).
Here the characteristic trends in the data become more
apparent and follow more faithfully those of the mobile
cluster simulations. The Pearson’s correlation values given
in the figure caption confirm this, indicating that the mobile
cluster model best represents the mechanisms at play.

A key signature of the cluster mobility is that the cluster
number density should fall at later times when coalescence
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FIG. 5 (color online). Cluster density (number per 3 nm X
3 nm area) evolution over time from AFM images and the
simulation models.

outweighs deposition [20]. In Fig. 5 we show that this is
precisely what is observed in our AFM images and the
mobile cluster simulation. In neither case is the early peak
in cluster density due solely to monomers, and, therefore,
could not be accounted for in either of the critical cluster
size models or by growth from substrate defects.

We have also considered mobile cluster simulations with
diffusion constant D, = D;s™* where the mobility pa-
rameter u is changed to reflect different diffusion mecha-
nisms [23]. With u = 1.5, expected when protein hopping
around the edge of the cluster induces the center-of-mass
diffusion, the cluster size distributions become too peaked
at later times, similar to the i = 1 distributions in Fig. 4.
With p = 0.5, expected when monomer evaporation and
condensation within a reservoir of surface monomers
dominates the cluster mobility, the simulation can yield
competitive size distributions using the protein adsorption
coefficient P = 1. However, we now find that the cluster
density is extremely low at long times regardless of the
monomer diffusion coefficient D, because the large clus-
ters retain high mobility. Details of these models will be
presented elsewhere. We conclude that the model we
present here with P = 0.01 and p = 1, possibly indicating
monomer diffusion over the protein cluster as a dominant
mechanism for cluster mobility, provides the best quanti-
tative comparison with the AFM data.

This model provides an estimate for the lysozyme mono-
mer surface diffusion rate through the fit to the cluster
density data of Fig. 5, which can be achieved without
significantly changing the scaled cluster size distributions
of Fig. 4. The result is D; ~9 X 107'® cm?s™!, such a
low value being very difficult to obtain from other tech-
niques. We found only one paper attempting to quantify the
rate of lysozyme diffusion across a mica surface, estimat-
ing the single protein (monomer) diffusion rate D; ~
1071 cm?s™! from a rudimentary consideration of the
length and time scales of the clustering observed in AFM
images [7].

In summary, we have provided a quantitative analysis of
the clustering mechanisms observed in AFM images of
lysozyme deposition onto mica. We show conclusive evi-
dence for mobility of not just protein monomers but also of
protein aggregates. The work demonstrates the pitfalls of
assuming that the adsorption follows a simple RSA model,
and shows that intuitive assumptions about diffusion and
nucleation mechanisms can be misleading.
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