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We show analytically and by numerical simulations that the conductance through �-biased chaotic
Josephson junctions is enhanced by several orders of magnitude in the short-wavelength regime. We
identify the mechanism behind this effect as macroscopic resonant tunneling through a macroscopic
number of low-energy quasidegenerate Andreev levels.
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Resonant tunneling is the process by which quantum
tunneling is enhanced by resonant transfer through inter-
mediate quasibound states [1]. The paradigmatic example
is a one-dimensional double-barrier structure, where the
transmission probability is given by

 Tres�E� �
T1T2

1� R1R2 � 2
�����������
R1R2

p
cos���E��

; (1)

in terms of the transmission and reflection probabilities
T1;2 � 1� R1;2 of the individual barriers. In the tunneling
regime, T1;2 � 1, narrow quasibound states exist between
the two barriers, with well resolved quantized energies, �m.
When the energy of the tunneling particle coincides with
one of these energies, ��E � �m� � 0, and in the case of
symmetric barriers, T1 � T2, the transmission is perfect,
Tres��m� � 1. This is to be contrasted with the transmission
probability T�E� � T1T2=4 away from resonance, and the
incoherent transmission probability T�E� � T1T2=�T1 �
T2� one obtains when inelastic scattering occurs between
the two barriers [2].

Resonant tunneling also occurs in higher dimensions. In
chaotic systems with no spatial symmetry, there is no
degeneracy of the intermediate states. Therefore, consid-
ering linear transport at low temperature, resonance occurs
with at most one state at a time, leading at best to an
increase of the conductance by an amount G0 � 2e2=h—
it is a microscopic effect of order one. In this Letter, we
show that the proximity of the intermediate system to two
superconductors can lead to a totally different phenome-
nology, where resonant tunneling through a macroscopic
number / Nn of intermediate levels occurs at the Fermi
energy. At resonance, the conductance is insensitive to the
transparency �n of the tunnel barriers, G / G0Nn, and
therefore much larger than the resonant conductance /
G0�nNn in absence of superconductivity. The resonance
condition is met when the phase difference between the
two superconductors is � � �.

The system we investigate is sketched in Fig. 1. A
ballistic metallic quantum dot is connected to two metallic
electrodes (L and R, each carrying Nn 	 1 channels) and
two superconducting electrodes (S1 and S2, each carrying
Ns 	 1 channels). The electrodes are coupled to the dot

via tunnel contacts of transparency 0< �n;s 
 1, such that
1 & �nNn � Nn, and �sNs 	 1. We are interested in
transport between the two normal leads as a function of
the phase difference � between the two superconductor’s
pair potentials, �S1

� �S2
exp��i��, j�S1;2

j � �.
The physics in our system is to a large extent governed

by Andreev reflection [3]. At low-energy, this is the domi-
nant reflection process at an interface between a metal and
a superconductor, where an electron is retroreflected into a
hole, and vice-versa. The process is sketched in Fig. 1.
When the excitation energy � is negligible against � and
the Fermi energy EF, the retroreflection is perfect, and the
hole (electron) exactly retraces the path previously fol-
lowed by the electron (hole), with an additional Andreev
reflection phase of ��=2��=2. In absence of normal
lead (one then has an Andreev billiard [4]), Andreev re-
flection renders all classical paths periodic in a cavity that
would be chaotic otherwise.

When the cavity is weakly connected to external leads,
transport can be resonantly mediated through those peri-
odic orbits that touch the contacts to the leads and both

FIG. 1 (color online). (a) Andreev reflection by a supercon-
ductor (S). An incoming electron (e) in a normal metal (N) near
the Fermi energy EF is reflected as a hole (h) with opposite
velocity. (b) Schematic of our system. A ballistic metallic cavity
is connected to two normal (L and R) metallic leads and two
superconducting (S1 and S2) leads. The superconducting pair
potentials have a phase difference of �. Two periodic Andreev
orbits contributing to macroscopic resonant tunneling at � � �
are drawn.
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superconductors. Two such orbits are depicted in Fig. 1.
Each such orbit represents a family of scattering trajecto-
ries constructed from a primitive trajectory, and an
Andreev loop that can be traveled p times, p � 0; 1; 2; . . .

We indicate segments of trajectories as ����a with a super-
script � � e; h denoting whether an electron or a hole
travels on the trajectory, and a subscript identifying
whether the segment touches a superconducting lead (a �
si) or only normal leads (a � n). With this convention, the
shorter trajectory in Fig. 1 represents trajectories coded in
Eq. (5). At � � 0, the action phase accumulated along such
trajectories is given by S��p� � p������ � ’; where
’ is a constant phase that is irrelevant for transport. The
crucial element is that the phase difference between the
two superconductors cancels out the accumulated Andreev
scattering phase when � � �. Then all members of a
family interfere constructively with each other because
S��p� � S��p0� � 0. This holds simultaneously for all
families of trajectories that touch both superconductors,
with the topology of the trajectories sketched in Fig. 1. As
there are infinitely many such trajectories, the result is
macroscopic resonant tunneling with a conductance
G�� � �� / G0Nn, independent of �n � 1. Similar reso-
nant behaviors were reported for nongeneric cavities with-
out mode mixing [5]; however, neither macroscopic reso-
nant tunneling nor the associated massive quasidegeneracy
of energy levels around � � 0 for � � � have been no-
ticed in earlier investigations of the density of states of cha-
otic Andreev billiards [6–10] and of transport through
chaotic Josephson junctions as the one shown in Fig. 1
[11–13].

We sketch our analytical calculation. In the symmetric
configuration we consider, where each normal lead carries
the same number of channels, connected to the cavity with
the same transparency, the average conductance from L to
R reads, to leading order in �nNn [14]

 hGi=G0 � hTeeRLi � hT
he
LLi: (2)

Here, T��ji gives the transmission probability for a quasi-
particle of type � from the normal lead i to a quasiparticle
of type � into the normal lead j. To evaluate the resonant
contributions to hTeeRLi and hTheLLi, we follow the semiclas-
sical approach of Ref. [15] (see also Refs. [16]). We first
write the transmission probabilities as

 T��ji �
1

2�@

Z
i
dy0

Z
j
dy

X
�1;�2

A�1A
�
�2 exp�i�S=@�: (3)

This expression sums over all classical trajectories �1 and
�2 entering the cavity at y0 on a cross section of lead i and
exiting at y on a cross section of lead j, while converting an
� quasiparticle into a � quasiparticle. The phase �S �
S�1 � S�2 gives the difference in action phase accumulated
along �1 and �2. In presence of tunnel barriers, the stabil-
ity amplitude A� is given by [17,18]

 A� � B�titj
Y
k

�rk�
l��k�; (4)

where l��k� gives the number of times that � is reflected
back into the system from the tunnel barrier k � L, R, the
transmission and reflection amplitudes at the normal leads
satisfy jtij2 � �1� jrij2� � �n;s (for i � L, R, S1, or S2),
and B2

� � �dpy0
=dy�� measures the rate of change of the

initial momentum py0
as the exit position y of � is changed,

for a fixed sequence of transmissions and reflections at the
tunnel barriers.

We use Eqs. (3) and (4) to evaluate the contributions to
the conductance arising from trajectories touching both
superconductors, topologically identical to those sketched
in Fig. 1. These trajectories are �-dependent, and we
subdivide them into class I trajectories, contributing to
hTheLLi (shorter trajectory), and class II trajectories, contrib-
uting to hTeeRLi (longer trajectory on Fig. 1). Here, we focus
our discussion on class I trajectories, and will present the
calculation of class II contributions elsewhere. Class I
trajectories are made of two legs (denoted �s1 and �s3 in
Fig. 1) which connect the left, normal lead to both super-
conducting terminals S1 and S2. This still allows �s1 and
�s3 to include intermediate bounces at any tunnel barrier,
either to a normal or a superconducting contact. All pos-
sible number of such reflections are effectively resummed
in our approach, in the spirit of Ref. [17]. The key point,
however, is that only trajectories with the same legs (with
the same sequence of reflections in �s1;s3) resonate with
each other. Class I trajectories are made of the following
sequence

 ��p�I � ��e�s1 � �
�h�
s1 � p��

�h�
s3 � �

�e�
s3 � �

�e�
s1 � �

�h�
s1 �; (5)

where s1 and s3 can be interchanged, and p � 0; 1; 2; . . .
They undergo 2p� 1 Andreev reflections, 2p reflections
at tunnel barriers, and accumulate an action phase

 S�;I�p�������t‘;I��2�t�s1���=2��=2�: (6)

One should substitute �! �� when interchanging seg-
ments s1 and s3, but the relative sign between � and �
does not affect the final result. Here, t‘;I gives the duration
of the Andreev loop [the sequence between bracket in
Eq. (5)] and t�s1 the duration of the segment �s1

. We see
that at � � 0 and� � �, the phase difference accumulated
by any two members (with different p and p0) of a given
family vanishes, so that all pairs of trajectories within a
given family resonate. There is, however, no resonance
between members of different families.

In normal chaotic billiards, the stability B2
� of periodic

orbits decreases exponentially with the number of times
the orbit is traveled [19]. The situation is fundamentally
different in the presence of superconductivity, where
Andreev reflections refocus the dynamics. The stability
of a trajectory is then given by the product of the stabilities
along the primitive segments (�s1 and �s3 for class I, �s1,
�n, and �s2 for class II) that the trajectories are made of,

PRL 100, 067001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
15 FEBRUARY 2008

067001-2



independent of p [20]. This is true as long as half the
duration of the Andreev loop is shorter than the
Ehrenfest time �E, i.e., the time beyond which an initially
narrow wave packet can no longer fit inside a supercon-
ducting lead [8,9]. For a quantum dot of linear size Lc and
Lyapunov exponent 	 (in absence of superconductivity),
one has �E � 	�1 ln�N2

s =kFLc�, which determines the

relative measure of trajectories contributing to macro-
scopic resonant tunneling, together with the average time
�D between two consecutive Andreev reflections.

We are now ready to evaluate the dominant contributions
to conductance close to resonance at � � 0 arising from
class I trajectories. We start from Eq. (3), and, following
the above considerations, we substitute

 

X
�1;�2

A�1A
�
�2�. . .��1;�2 ! �2

n

X
��prim

B2
�

X1
p;p0�0

�1� �n�
a�p�p0��p�p

0�c
s �. . .��;p;p0 : (7)

To obtain (7), we paired trajectories by class, noting that for a given class, all trajectories have the same stability but differ
only by the number of Andreev reflections at the superconductors and normal reflections at the normal leads, and by the
different action phases they accumulate along their Andreev loop. The sum over classes is then represented by a sum over
primitive trajectories, and the exponents a � 1 and c � 1 for class I are determined by the number of Andreev and normal
reflections in Eq. (5). Reflection phases at the tunnel barriers do not appear because all trajectories are traveled as many
times by an electron as by a hole. The evaluation of

P
B2
� proceeds along the lines of Ref. [15], and details will be

presented elsewhere. The resonant part of the conductance from class I and II contributions finally reads

 

hTheLLir �
��2

nNn
4

�
Ns

2�nNn � 2�sNs

�
2
�1� �1� �E=�D� exp���E=�D��

�s
1� 2�s�1� �n� cos����� � �2

s�1� �n�
2 : (8a)

hTeeRLir �
�2�2

nN2
n

8Ns

�
Ns

2�nNn � 2�sNs

�
3
�1� �1� �E=�D � �

2
E=2�2

D� exp���E=�D��


1� �2

s�1� �n�
2

1� 2�s�1� �n�
2 cos����� � �2

s�1� �n�
4 : (8b)

The sum of Eqs. (8a) and (8b) gives the dominant semi-
classical contribution to the conductance. It exhibits the
functional dependence of resonant tunneling [compare to
Eq. (1)], where the resonance is however always at the
Fermi level, and is achieved by setting the phase difference
between the two superconductors at � � �. This reso-
nance condition is the same for all trajectories. This is
why the resonance is macroscopic, / Nn, and not of order
one, as is the case for standard resonant tunneling in
chaotic systems. In most instances, hTheLLir 	 hT

ee
RLir.

Then the resonance height at large �E=�D, small �n, and
�s � 1 is given by G��� ’ �Nn=16. Simultaneously, the
sharpness of the resonance peak, measured by its width at
half height, is proportional to �n. We also note that the
effect is damped for imperfectly connected superconduc-
tors �s < 1 because the stability of resonant orbits de-
creases / �ps with the number p of times the loop is
travelled. For �s � 0, the effect disappears completely.

The conductance is the sum of the semiclassical contri-
butions, Eqs. (8), and of quantum universal contributions.
We calculated the latter using Nazarov’s circuit theory [21]
and obtained Gnct���=G0 � �nNn=2 [22]. In the tunneling
regime, semiclassical contributions thus enhance the con-
ductance by a factor ��1

n 	 1 at resonance.
To confirm our predictions numerically, we extend the

open kicked rotator of Refs. [9,23] to take into account
both transport between two normal leads and Andreev
reflection at two superconducting terminals. We construct
a four-terminal scattering matrix from the Floquet operator
of the kicked rotator as in Refs. [9,23], and evaluate the

exact expression for the conductance [14],

 G=G0 � TeeRL � T
he
RL � 2

TheLLT
he
RR � T

he
LRT

he
RL

TheLL � T
he
RR � T

he
LR � T

he
RL

: (9)

In our numerics, we restrict ourselves to perfectly con-
nected superconductors, �s � 1. We average our data over
ensembles of systems with fixed classical parameters—
such as the width of the leads, the strength of the tunnel
barriers, and the size and chaoticity of the cavity—but
different cavity shape or lead positions. We focus our
investigations on the semiclassical limit kFLc ! 1.

In Fig. 2, we show a resonance in the semiclassical
regime. We obtain very good agreement between the nu-
merical data (circles) and the analytical prediction with
�E=�D ’ 0:79. Without the semiclassical contribution, this
agreement would break down close to resonance, where
universal contributions give a prediction Gnct��� � 2, too
small by an order of magnitude. The left inset illustrates
the increase of the peak height and narrowness as the
semiclassical parameter kFLc increases, all classical pa-
rameters being kept constant. The four sets of data in this
inset correspond to a given classical configuration, with the
electronic wavelength decreasing by factors of four from
one curve to the next, starting from the bottommost (black)
curve. The conductance increases at each step because the
number of conduction channels scales linearly with kFLc.
In the absence of semiclassical contributions, these four
curves would exhibit the same peak-to-valley ratio. Here,
however, this ratio increases with kFLc due to the onset of
semiclassical contributions.
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The connection can be made between the predicted and
observed enhancement of conductance at � � � and reso-
nant tunneling through a macroscopic number of quasi-
degenerate Andreev levels. In �-biased closed chaotic
Andreev billiards, Bohr-Sommerfeld quantization predicts
that all periodic orbits touching both superconductors con-
tribute to a peak in the density of states at the Fermi energy
with �Ns states. Once electrodes are connected to the
billiard, each � � 0 level that significantly overlaps with
the tunnel barriers to both electrodes contributes one per-
fect transmission channel to transport via resonant tunnel-
ing, which therefore becomes macroscopic. We have
numerically checked that the observed increase of conduc-
tance is accompanied by the emergence of a large peak
around � � 0 in the corresponding Andreev billiard. This
and other results will be presented elsewhere [22].

In summary, we investigated semiclassically the con-
ductance through quantum chaotic Josephson junctions
connected to two external normal leads. We found an
order-of-magnitude enhancement of the conductance
when the two superconductors have a phase difference of
�. We identified the mechanism behind this enhancement
as resonant tunneling through a macroscopic number of
quasidegenerate levels at the Fermi energy.
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and the Department of Theoretical Physics at the Uni-
versity of Geneva for their hospitality.

[1] Resonant Tunneling in Semiconductors, Physics and
Applications, NATO ASI Series B: Phys. Vol. 277, edited
by L. L. Chang, E. E. Mendez, and C. Tejedor (Plenum
Press, New York, 1991).
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FIG. 2 (color online). Conductance through a chaotic
Josephson junction vs the phase difference � between the two
superconductors. Circles are numerical results for �n � 0:01,
kFLc � 8192, kFLc=Nn � 20, kFLc=Ns � 10, and Lyapunov
exponent 	 ’ 1:3. The upper curve is the analytical prediction
obtained by summing the semiclassical resonant contributions of
Eqs. (8) with the quantum universal contributions. The lower
curve gives the universal prediction obtained from circuit theory.
Left inset: Numerical data for the same classical parameters
kFLc=Nn � 20, kFLc=Ns � 10, and K � 10 as in the main plot,
for kFLc � 128, 512, 2048, and 8192 (from bottom to top). Note
the change in peak-to-valley ratio.
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