
Evidence of Distributed Interstitialcy-Like Relaxation of the Shear Modulus
due to Structural Relaxation of Metallic Glasses

S. V. Khonik,1 A. V. Granato,2 D. M. Joncich,2 A. Pompe,2 and V. A. Khonik1

1Department of General Physics, State Pedagogical University, 86 Lenin St., Voronezh 394043, Russia
2Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Greet St., Urbana, Illinois 61801, USA

(Received 4 May 2007; published 12 February 2008)

The interstitialcy theory is used to calculate the kinetics of shear modulus relaxation induced by
structural relaxation of metallic glasses. A continuous distribution of activation energies is shown to be a
salient feature of the relaxation. High precision in situ contactless electromagnetic acoustic-
transformation shear modulus (600- kHz) measurements performed on a Zr-based bulk metallic glass
are found to strongly support the approach under consideration. It is revealed that the activation energy
spectra derived from isothermal and isochronal shear modulus measurements are in good agreement with
each other. It is concluded that the increase of the shear modulus during structural relaxation can be
understood as a decrease of the concentration of structural defects similar to dumbbell interstitials in
simple crystalline metals.
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In recent years, the general idea that basic thermody-
namic and kinetic properties of supercooled liquids and
glasses are governed by the unrelaxed ( � high frequency)
shear modulus G is gaining more and more acceptance. In
particular, it was argued and experimentally confirmed that
the activation energy of a viscous flow event in supercooled
organic liquids is determined by the local G [1]. An
excellent review of so-called elastic models for viscous
flow of glass forming liquids utilizing a similar basic idea
was recently given by Dyre [2]. Johnson and Samwer [3]
proposed a universal law for inhomogeneous plastic flow
of metallic glasses with G playing a central role. This role
was also confirmed for homogenous flow of metallic
glasses both below and above the glass transition tempera-
ture Tg [4,5]. Rather surprisingly, it was found that the ratio
G=B (B is the bulk modulus) governs the ductile-brittle
transition in metallic glasses [6]. Since B is rather insensi-
tive to structural relaxation, it is the shear modulus that
controls the embrittlement. An adequate understanding of
the nature of shear modulus changes at different conditions
turns out to be, therefore, a problem of major scientific and
application importance.

Meanwhile, the unrelaxed shear modulus is the key
physical quantity of the interstitialcy theory (IT) proposed
by Granato [7]. This theory considers dumbbell interstitials
(or similar defects in the case of complex materials; we
nevertheless call them interstitialcies thereafter) to be the
main structural defects of crystalline, liquid, and glassy
states. It is shown below that the increase of G during
structural relaxation of glass can be understood as a de-
crease of the concentration of interstitialcies.

The specific properties of interstitialcies—high shear
susceptibility and large vibrational entropy—provide a
comprehensive understanding of basic thermodynamic
and kinetic properties of (supercooled) liquids and glasses
within a common framework. In particular, the IT gives

quantitative explanations of some sound long-standing
problems of condensed matter physics. Amongst these
problems one can mention, first, the entropy of melting
�Sm � 1:2k (per one particle, k is the Boltzmann constant)
that holds all over the Periodic table with only a few
exceptions [8]. This so-called Richard rule has remained
unexplained since 1897, and the IT gives the exact
�Sm-value [7,9]. The common interpretation of the known
Lindemann melting rule (1910) implies that melting occurs
when the vibration amplitude reaches a critical value Ac.
Meanwhile, a fit to the experiment gives surprisingly small
value for Ac, just only about 5% of the interatomic distance
[8]. The IT analytically derives the Lindemann rule from a
thermodynamic viewpoint with no connection to Ac giving
the melting temperature proportional to the shear modulus
[7] that is indeed observed [8]. The known decrease ofG in
the glass by 20–40% with respect to the crystal can be
interpreted as the presence of 1–2% of interstitialcies,
which effectively decrease G [9]. A decrease of the
Debye temperature upon glass formation and its increase
as a result of structural relaxation below Tg can be attrib-
uted to a change of the defect concentration, which con-
trols G. The specific properties of quenched-in
interstitialcies are supposed to define a number of heat
capacity (Cp) and scattering effects. (i) Low temperature
(5–10 K) Boson Cp-peak and corresponding peaks in
neutron inelastic and Raman scattering are viewed within
the IT as arising from low-frequency localized resonant
vibration modes of interstitialcies [10]. The same resonant
modes can be the source of the Einstein component in the
total Cp, which was found in recent low temperature Cp
studies (e.g., [11]). (ii) A decrease of Cp of liquids with
temperature and Cp-change at T � Tg can be explained
within the IT as related to the fragility [9]. The fourth-order
elastic constants of a metallic glass are in good agreement
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with the predictions of the IT [12]. Finally, the well-known
empirical Vogel-Fulcher-Tammann equation for the vis-
cosity above Tg, which has remained unexplained so far,
is analytically given by the IT in terms of the ‘‘fragility
softness parameter’’ [13].

The IT also finds support in computer simulations.
Indeed, Schober et al. [14,15] and others found small
groups of atoms (10 atoms or more) that move collectively,
in a ‘‘chainlike’’ (’’stringlike’’) fashion while neighboring
atoms remain almost unaffected. Meanwhile, the stringlike
low-frequency resonant vibration mode is just the basic
dynamic feature of the interstitialcy configuration, which
embraces movement of 10–20 atoms [16,17]. The exis-
tence of chain (string) motions was detected in simulations
of different materials and prompted Oligschleger and
Schober [15] to notice that such a behavior resembles the
signature of interstitialcies in crystals. Recently, Nordlund
et al. [18] found that the atoms in simulated liquid copper
belonging to the chains (strings) have many of the same
properties as interstitialcies in crystals, and the interstitial-
cies in glassy Cu have the expected properties of those in
crystalline copper at high concentrations.

Recently, the IT was applied to derive the isothermal
kinetics of structural relaxation and related shear modulus
and viscosity behavior in glasses [19]. The analysis was
performed using a single activation energy approach for
defect activation during relaxation. It was later found that
although this approach gives correct relaxation kinetics,
the numerical values of the activation energy derived from
real shear modulus data are unrealistic. The present Letter
gives an analysis of the shear modulus relaxation for both
isothermal and isochronal (�linear heating) conditions
implying a distribution of activation energies. Specially
performed in situ shear modulus measurements strongly
support the obtained results.

As previously [19], we assume that a spontaneous de-
crease of the interstitialcy concentration during structural
relaxation follows first-order kinetics. However, the corre-
sponding activation energy E is supposed to be continu-
ously distributed because of a distribution of local shear
moduli due to fluctuations in local densities, chemical
bonding, etc. Let N�E; T; t� be temperature- and time-
dependent defect concentration per unit activation energy
interval. Then, the relaxation kinetics is given by dN=N �
�� exp��E=kT�dt, where � is the attempt frequency. If
N0�E� is the initial interstitialcy concentration per unit
activation energy interval (i.e., the initial activation energy
spectrum, AES), then it is easy to show that after prean-
nealing during time � and subsequent annealing during
time t, the interstitialcy concentration decreases to [20]

 N�E; T; t� � N0�E� exp������ t� exp��E=kT��: (1)

The function ��E; T; t� � exp������ t� exp��E=kT��
in Eq. (1) sharply increases near the ‘‘characteristic acti-
vation energy’’ E0 � kT ln���� t� and to a good precision
can be replaced by the Heaviside step function equal to 0 at

E< E0 and 1 at E> E0. The total concentration C of
defects available for relaxation at a given instant is then
given by integration over the AES:

 C�T; t� �
Z Emax

Emin

N�E; T; t�dE �
Z Emax

kT ln����t�
N0�E�dE;

(2)

where Emin and Emax are the lower and upper limits of the
AES available for activation and N�E; T; t� is given by
Eq. (1). Next, since only a small portion of the AES is
scanned during an isothermal test, one can use the known
‘‘flat spectrum’’ approximation, N0 � const � N0�E� [20].
Then, using the aforementioned step substitution for
��E; T; t�, the concentration (2) is reduced to C�t� �
N0Emax � N0kT ln���� t�. The basic equation of the IT
gives an exponential decrease of the shear modulus with C,
i.e., G � Gx exp���C�, where � is a shear softening
parameter and Gx is the shear modulus of the perfect
crystal [7]. For defect copper, � � 25 defining a strong
shear modulus softening with increasing C [7]. A similar
value of � was recently determined for a bulk metallic
glass [21]. For small C-changes, the modulus change
�G�T; t�=G � ���C�T; t�, where �C�T;t��C0�
C�T;t� is the change of the interstitialcy concentration.
Supposing that G-measurement begins at t � 0 after pre-
annealing during time � and using the C�T; t�-kinetics
given above, the isothermal kinetics of the normalized
G-change, g�t� � G�t�=G0 � 1, becomes

 g�t� � ���C�t� � C0� � �kTN0 ln�1� t=��: (3)

In the case of linear heating, the characteristic activation
energy linearly increases with temperature, i.e., E0 � AT,
where A � 3	 10�3 eV=K is weakly (logarithmically)
dependent on the heating rate and attempt frequency
[22]. Then, the isochronal modulus change is given by
g�T� � ���C�T� � C0� with C�T� �

R
Emax
AT N0�E�dE

and C0 �
REmax
Emin

N0�E�dE. The last three formulae can be
simply combined into

 g�T� � �
Z AT

Emin

N0�E�dE: (4)

Equations (3) and (4) give the relaxation kinetics of the
shear modulus upon isothermal and isochronal conditions,
respectively. If g�T� is converted into the dependence
g�E0� using E0 � AT, then Eq. (4) can be used for recon-
struction of the initial AES, namely

 N0�E0� � ��1@g�E0�=@E0: (5)

We performed a detailed check of the relaxation kinetics
given by Eqs. (3) and (4) with the help of high precision
in situ contactless shear modulus measurements carried out
by an electromagnetic acoustic-transformation (EMAT)
technique on bulk Zr52:5Ti5Cu17:9Ni14:6Al10 (at.%) metallic
glass. The initial glassy bars with the dimensions of 2	
5	 60 mm3 were prepared by melt jet casting into a
copper mold at a rate of � 102 K=s [23]. The glass tran-
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sition temperature was found by differential scanning calo-
rimetry to be �683 K at dT=dt � 5:7 K=min . X-ray
checked bars were next cut into 2	 5	 8 mm3 samples
for EMAT measurements based on a method by Lyall and
Cochran [24]. Frequency modulation and phase sensitive
detection were used to continuously monitor the shear
thickness vibration frequency f � 600 kHz of the sample.
The relative precision of determination of the resonant
frequency f was �10�5. The relative changes of f2 were
attributed to the relative changes of G. More experimental
details are given elsewhere [25].

Both isothermal and isochronal runs were performed. In
an isothermal run, the sample was heated at 5:7 K=min up
to the testing temperature without overshooting, and sub-
sequent automatic modulus measurements were carried out
during a time interval ranging from 5 ks to (in a few cases)
400 ks. Temperature variations were kept within a few
parts of a Kelvin. Nineteen runs in the temperature range
446 
 T 
 623 K were performed. Isochronal runs were
taken at 5:7 K=min up to 623 K.

A typical example of isothermal relaxation kinetics is
shown in Fig. 1, which gives the time change of the
normalized shear modulus g � G=G0 � 1 � f2=f2

0 � 1
at T � 509 K during � 85 ks. As is the case at all other
temperatures, the shear modulus logarithmically increases
with time after a transient of about a few kiloseconds.
Although similar behavior is documented in the literature
(e.g., [26]), it is to be emphasized that all ultrasound modu-
lus studies known to us were actually carried out ex situ at
room temperature after quenching the samples subjected to
annealing treatments. Meanwhile, a correct analysis of the
relaxation kinetics certainly requires in situ measurements
as was done in the present Letter. Besides that, none of the
known shear modulus measurements covers such long-
time intervals.

We next checked whether the observed modulus kinetics
follows Eq. (3). For this, a least-square fitting based on the
Levenberg-Marquardt algorithm was applied allowing one
to obtain the two unknown parameters, �N0 and �. It was
found that Eq. (3) gives an excellent description of the

relaxation in the whole time or temperature range inves-
tigated. In most of the cases, the reduced �2-value is as low
as �10�9 while the coefficient of determination R2 �
0:999 and higher. It is to be also noted that Eq. (3) gives
more complicated kinetics at short times as compared with
the standard lnt-law in the usual AES approach [27]. The
latter, besides that, does not provide any link between the
defect and modulus relaxation.

Equation (3) allows a rough reconstruction of the AES as
follows. An isothermal run scans a small portion of the
AES corresponding to the energies ranging from Emin

0 �
kT ln�� up to Emax

0 � kT ln���� tmax�, where tmax is the
duration of a measurement run. Since Eq. (3) assumes a
constant value of N0, the AES can be reconstructed as a set
of horizontal segments corresponding to N0 � const. This
is shown in Fig. 2 for all testing temperatures, where the
shear softening parameter � was accepted to be 25, the
attempt frequency � � 1013 s�1, and � was determined
using the aforementioned fitting procedure. N0 was calcu-
lated by two different ways: (i) using the same fitting
procedure (open circles in Fig. 2) and (ii) from the long-
time slope of g�lnt�-curves given by Eq. (3) as @g=@ lnt �
�kTN0 (closed circles in Fig. 2). Both methods give es-
sentially the same result, and the defect concentration N0

per unit activation energy interval rapidly increases with
E0 in the range 1.45 to 1.90 eV while a tendency of
N0-decrease at higher E0 is likely.

The AES represents a material parameter of glass. If
reconstructed correctly, it has to be the same independently
of the method used for data acquisition. In the case of
isochronal tests, Eq. (5) can be used for AES reconstruc-
tion. To do this, the structural relaxation and anharmonic
(linear in T) contributions to the total g�T�-curve were
separated according to g�T��gsr�T��ganh�T�. This is
shown in Fig. 3, where open circles give the
gsr�T�-component. After the latter dependence is converted
to gsr�E0�, the AES can be calculated using Eq. (5) with
g � gsr. The result is given by open diamonds in Fig. 2. It
is seen that AES reconstructions from independent isother-

FIG. 1 (color online). An example of the relaxation kinetics of
the change of the normalized shear modulus. After a transient of
about a few ks, the shear modulus logarithmically increases with
time. The solid curve give the least-square fit to Eq. (3).

FIG. 2 (color online). Activation energy spectrum recon-
structed from isothermal (horizontal segments) and isochronal
(open diamonds) shear modulus measurements. The solid curve
gives a polynomial approximation of the whole AES data set.
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mal and isochronal G-measurements nicely agree with
each other.

It is now possible to calculate the change of the inter-
stitialcy concentration �C due to structural relaxation
in the temperature range investigated corresponding to
activation energies Emin � 1:45 & E & Emax � 2:2 eV
(Fig. 2). For this, we used the averaged AES, �N0, obtained
by a third degree polynomial approximation (solid curve in
Fig. 2). Then, �C �

REmax
Emin

�N0�E�dE � 0:003. This is to be
compared with the total interstitialcy concentration in glass
given by C � ��1 ln�Gx=G� [7]. The shear modulus of the
glass under investigation in the as-cast state is G � 0:6	
Gx that gives the total initial concentration C � 0:02.
Therefore, the defect concentration decreases by 15–20%
in the course of annealing.

In conclusion, we calculated the kinetics of the shear
modulus G within the interstitialcy theory [7]. It is as-
sumed that the decay of the concentration of basic struc-
tural defects—the entities similar to dumbbell inter-
stitials—follows first-order kinetics with distributed acti-
vation energies. At T � const, G logarithmically increases
with time after some transient according to Eq. (3). At
dT=dt � const, the relaxation kinetics follows Eq. (4).

High precision in situ 600 kHz shear modulus measure-
ments were used to test the obtained results. It was found
that Eq. (3) gives a very accurate description of the relaxa-
tion kinetics and allows approximate reconstruction of the
activation energy spectrum (AES) responsible for struc-
tural relaxation. The same AES was reconstructed from
isochronal modulus measurements using Eq. (5). It was
found that both spectra nicely agree with each other.

The results obtained provide the evidence that the
G-increase upon structural relaxation can be understood
as a decrease of the concentration of structural defects
similar to dumbbell interstitials in simple crystalline met-

als. This concentration C � 0:02 in the initial glass de-
creasing by 15–20% in the course of annealing.
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FIG. 3 (color online). Temperature dependence of the change
of the normalized shear modulus at a heating rate of 5:7 K=min
and its components due to anharmonicity and structural relaxa-
tion.
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