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This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized
turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion
gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral
slopes are consistent with scaling predictions for critically balanced turbulence of Alfvén waves above the
ion gyroscale (spectral index�5=3) and of kinetic Alfvén waves below the ion gyroscale (spectral indices
of �7=3 for magnetic and �1=3 for electric fluctuations). This behavior is also qualitatively consistent
with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the
frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both
above and below the ion gyroscale.
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Introduction.—A wide variety of astrophysical plas-
mas—the solar wind and corona, the interstellar and intra-
cluster medium, accretion disks around compact objects—
are magnetized and turbulent. The turbulence is damped at
small scales where the plasma is weakly collisional, re-
quiring a kinetic description. It is often a good approxima-
tion to consider small fluctuations about an equilibrium
state with a uniform (or large-scale) dynamically strong
mean magnetic field (the Kraichnan hypothesis [1]). The
resulting (subsonic) magnetohydrodynamic (MHD) turbu-
lence is believed to be a Kolmogorov-like cascade of
spatially anisotropic Alfvénic fluctuations [2]. Such anisot-
ropy is observed in laboratory plasmas [3], the solar wind
[4], and numerical simulations [5]. Assuming a critical
balance between the linear frequencies and nonlinear de-
correlation rates [2,6], the anisotropy is scale dependent
with wave numbers parallel and perpendicular to the local
mean field related by kk / k

2=3
? . This implies that in most

astrophysical plasmas, the frequencies of the Alfvénic
fluctuations remain below the ion cyclotron frequency,
! � kkvA � �i, even as the perpendicular wavelength
reaches the ion gyroscale, k?�i � 1.

Such fluctuations are described by gyrokinetics (GK), a
rigorous low-frequency anisotropic limit of kinetic theory
[7–10], which systematically averages out the particle
cyclotron motion. GK orders out the MHD fast wave and
cyclotron resonances but retains finite Larmor radius ef-
fects and the collisionless Landau resonance. GK enables
numerical studies of kinetic turbulence with today’s com-
putational resources because the gyroaveraging eliminates
fast time scales and reduces the dimensionality of phase
space from six to five. GK has been used to study electro-
static turbulence in fusion plasmas for decades, but there

have been few GK treatments of astrophysical turbulence.
GK is not applicable to large-scale, roughly isotropic fluc-
tuations, such as are directly excited in the interstellar
medium by supernovae. However, the fluctuations in mag-
netized turbulence become lower amplitude and more
anisotropic at smaller scales. GK theory and simulations
are thus appropriate, and hold considerable promise, for
studies of microscopic phenomena such as turbulent heat-
ing and magnetic reconnection, and for interpreting obser-
vations of short-wavelength turbulent fluctuations. This
Letter reports the first ab initio, fully electromagnetic,
kinetic simulations of turbulence in a magnetized weakly
collisional astrophysical plasma.

The study of turbulence in weakly collisional plasmas
benefits from in situ measurements of the near-Earth solar
wind, illuminating the properties of turbulence from the
large (energy-containing) scales to the small, kinetic scales
at which fluctuations are damped. The one-dimensional
frequency spectrum of magnetic fluctuations typically
shows a power-law behavior with a �5=3 slope at low
frequencies [11], a break at a few tenths of a Hz, and a
steeper power law at higher frequencies with a slope that
varies between �2 and �4 [12]. It is generally agreed that
the �5=3 range is an MHD inertial range, while the break
and the dissipation-range slope have been attributed to
proton cyclotron damping [13], Landau damping of kinetic
Alfvén waves (KAW) [14], or dispersion of whistler waves
[15]. Recent simultaneous magnetic- and electric-field
measurements found an increase in the wave phase velocity
above the spectral break [16], consistent with the conver-
sion to a KAW cascade but inconsistent with cyclotron
damping [10]. The GK simulations presented below cap-
ture all of these spectral features with magnetic- and
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electric-energy spectra similar to those reported empiri-
cally in [16]. Our simulation results suggest that the turbu-
lent spectra observed in the solar wind are a consequence
of the transition from an Alfvén-wave to a KAW cascade.

The code.—We have used the new code, ASTROGK,
developed to study astrophysical turbulence. ASTROGK is
essentially a slab version of the publicly available code
GS2, used to study plasma turbulence in fusion devices
[17]. We now give a brief overview of the code.

The simulation domain is a periodic flux tube with a
straight uniform mean magnetic field B0 and no equilib-
rium gradients. All particle species have Maxwellian equi-
librium distributions. The code solves the GK equation [8],
evolving the perturbed gyroaveraged distribution function
hs�x; y; z; "s; �� of the guiding centers for each species s—
ions (protons) and electrons with the correct mass ratio
mi=me � 1836. Spatial dimensions perpendicular to the
mean field �x; y� are treated pseudospectrally; a conserva-
tive finite-difference scheme is used in the parallel direc-
tion z. A gyroaveraged pitch-angle-scattering collision
operator [9] is used, with pitch-angle derivatives computed
from second-order finite differences. The electromagnetic
field is represented by the scalar potential ’, parallel vector
potential Ak, and parallel magnetic field perturbation �Bk.
These are determined from the quasineutrality condition
and Ampère’s law [8], where the charge densities and
currents are calculated as velocity-space moments of the
distribution function. These velocity-space integrals (over
particle energies "s � msv

2=2 and pitch angles � � vk=v)
are done with spectral accuracy, using high-order
Gaussian-Legendre integration rules. The linear terms in
the GK system, including the field equations, are advanced
implicitly in time; for the nonlinear terms, an explicit,
third-order Adams-Bashforth scheme is used.

Linear benchmarks.—GS2 has been verified to describe
correctly the linear kinetic physics in parameter regimes
relevant to astrophysical plasmas [8]. ASTROGK has been
checked to agree with GS2 exactly and benchmarked
against linear kinetic theory, as illustrated by Fig. 1: for

k?�i � 1, we find Alfvén waves with ! � �kkvA and
little damping; for k?�i � 1, these become kinetic Alfvén
waves with ! � �kkvAk?�i=

�����������������������������������������
�i 	 2=�1	 Te=Ti�

p
and

stronger damping, in agreement with linear theory [8,18].
Here vA � B0=

����������������
4�mini
p

is the Alfvén speed, ni the ion
number density, Te and Ti the ion and electron tempera-
tures, and �i � 8�niTi=B2

0.
Driving.—The driving and dissipation scales in astro-

physical turbulence are widely separated—in the solar
wind, the effective driving scale is L� 1011 cm and the
ion gyroscale is �i � 106 cm [10]—beyond the range
accessible numerically. Our simulation domain is under-
stood to be much smaller than the driving scale. We model
the energy influx from larger scales by adding to Ampère’s
law a parallel ‘‘antenna’’ current ja

k;k. For each chosen
driving wave vector ka, the antenna amplitude is calcu-
lated from a Langevin equation whose solutions are Alfvén
waves with wave vector ka, frequency! � �kakvA, and a
decorrelation rate comparable to !. This driving is moti-
vated by the expectation that turbulence in the inertial
range (at scales �i � k�1 � L) is Alfvénic and critically
balanced [2].

Dissipation.—The driving injects power into the system;
in steady state, this power must be dissipated into heat. By
Boltzmann’s H theorem, no entropy increase, and there-
fore no heating, is possible in a kinetic system without
collisions. If the collision rate is low, the distribution
function develops a small-scale structure in velocity space
[8,9]. This makes the velocity derivatives in the collision
integral large so the collisions can act, a situation analo-
gous to the emergence of small spatial scales in neutral
fluids with small viscosity (Kolmogorov cascade). In GK
turbulence, the cascades in position and velocity space are
linked, creating a kinetic cascade in five-dimensional
phase space [9]. Collisionless Landau damping of the
electromagnetic fluctuations leads to particle heating in
the sense that it transfers the electromagnetic fluctuation
energy into fluctuations of the particle distribution function
(the kinetic entropy cascade [9]), which are then converted
into heat by collisions.

A detailed analysis of the kinetic cascade will be pre-
sented in a separate study, but the lesson is that kinetic
turbulence simulations must include collisions and have
sufficient velocity-space resolution for the correct relation-
ship to be established between small-scale structures in
velocity and position space. Accomplishing this with a
physical collision operator simultaneously for ions and
electrons is difficult. To ease the resolution requirements,
we employ a hypercollisionality (analogous to hypervis-
cosity in fluid simulations) with the form of a pitch-angle-
scattering operator with a wave-number-dependent colli-
sion rate �h�k?=k?max�

8, where k?max is the grid-scale
wave number. This artificially enhanced collision term
terminates the cascade and produces positive-definite heat-
ing close to the grid scale, but leaves essentially collision-

FIG. 1. Normalized frequencies !=kkvA and damping rates
�=kkvA vs normalized perpendicular wave number k?�i for a
plasma with �i � 1 and Ti=Te � 1. ASTROGK (squares) cor-
rectly reproduces the analytic results from the linear collisionless
gyrokinetic dispersion relation (line) [8].
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less physics at larger scales. For the ions, the importance of
the hypercollisionality is marginal, while for the electrons
we need a large value of �h. As a result, electron heating (at
the electron gyroscale �e) is not well modeled, but this is
an acceptable sacrifice because our focus is on the turbu-
lent cascade through the ion gyroscale at �i � �e.

Results.—The physical parameters in GK simulations
of plasma turbulence are �i and Ti=Te. Here both are set
to 1, sensible characteristic values for the solar wind at 1
AU; a full parameter scan is desirable in the future. By
varying the driving wave number ka and the (hyper)col-
lision rate, we may focus on various scale ranges. Here
we present results obtained for the inertial range (k?�i �
1) and the ion gyroscale (k?�i � 1). The normalized
magnetic-energy spectrum is defined EB?�k?� �
�Lz=L

2
?�2�k

3
?

R
dzhjAk;k?�z�j

2i=8�niTi, where k? is mea-
sured in units of ��1

i , Lz and L? are parallel and perpen-
dicular box dimensions, and the angle brackets denote
angle averaging over a wave number shell centered at
jk?j � k? with width 2�=L?. The normalized electric-
energy spectrum EE?�k?� is defined similarly in terms of
’k? , with an extra factor of �c=vA�2, where c is the speed
of light.

In the inertial range, k?�i � 1, the reduced MHD
equations are the rigorous limit of GK for Alfvénic fluc-
tuations [9], so kinetic turbulence in this regime must be
consistent with the numerical results obtained in MHD
simulations [5]. Figure 2 shows the normalized magnetic
and electric-energy spectra calculated gyrokinetically in
this regime. As expected for critically balanced Alfvénic
turbulence [2], these spectra are coincident, showing a
scaling consistent with k�5=3

? . This is the first demonstra-
tion of an MHD turbulence spectrum in a kinetic simula-
tion. While not surprising, this result can be viewed as a
nonlinear benchmark.

Our main focus is on scales near k?�i � 1, a regime that
cannot be simulated by any fluid model. We know, how-
ever, that low-frequency Alfvénic turbulence is rigorously
described by reduced MHD equations for k?�i � 1 and

by a similarly reduced version of the electron MHD equa-
tions for k?�i � 1 [9]. The latter system supports kinetic
Alfvén waves (see Fig. 1). If one assumes a turbulent
cascade of KAW-like fluctuations decorrelating on a time
scale comparable to the linear KAW period (critical bal-
ance), scaling arguments predict that the magnetic-energy
spectrum steepens from k�5=3

? to k�7=3
? , while the electric-

energy spectrum flattens to k�1=3
? [9,10,19]. A spectral

break at the transition between Alfvén-wave and KAW
turbulence is expected at k?�i � 1. Figure 3 shows the
energy spectra in our simulation around this transition.
Both the spectral break (at k?�i ’ 2) and the steepening
(flattening) of the magnetic-(electric-)energy spectra are
observed. The spectra at wave numbers below and above
the transition are consistent with the predictions for criti-
cally balanced Alfvén-wave and KAW cascades
[2,9,10,19].

There is a striking similarity between the simulated
spectra shown in Fig. 3 and the magnetic- and electric-
energy spectra in the solar wind reported in [16]. The
increase in phase velocity in the dissipation range (k?�i >
1), shown by both measurement and simulation, is com-
pelling evidence that the observed breaks in the spectra are
caused by a transition to a KAW cascade, not by the onset
of ion cyclotron damping [10].

The scaling predictions for KAW turbulence are made
assuming negligible Landau damping. In our simulations,
the damping is weak, so it is reasonable that the scaling
predictions are well satisfied. However, this will not be true
in all real astrophysical situations. We have argued [10]
that the spectra much steeper than k�7=3

? often observed in

FIG. 2 (color online). Magnetic (solid line) and electric
(dashed line) energy spectra in the MHD regime (k?�i < 1).
The box size is L?=2� � 10�i. Electron hypercollisionality is
dominant for k?�i 
 1 (dotted line).

FIG. 3 (color online). Bold lines: normalized energy spectra
for �B? (solid line), �Bk (dash-dotted line), and E? (dashed
line). Thin lines: solution of the turbulent cascade model of [10].
Dimensions are �Nx;Ny; Nz; N"; N�; Ns� � �64; 64; 128; 8; 64; 2�,
requiring ’ 0:5� 109 computational mesh points, with box size
L?=2� � 2:5�i. Electron hypercollisionality is dominant for
k?�i 
 8 (dotted line).
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the solar wind [12] may be due to significant Landau
damping. The effect of this damping on the energy spectra
can be estimated, as proposed in [10] (see also [18]), using
a spectral model of the turbulent cascade based on three
assumptions: (i) spectrally local energy transfer, (ii) critical
balance, (iii) the applicability of the linear damping rates.
Using this model, the energy spectrum EB?�k?� can be
predicted over the entire simulation range, given one
‘‘Kolmogorov’’ constant, which quantifies the linear
damping rate relative to the nonlinear cascade rate. In
Fig. 3, we show that this analytical model reproduces the
entire shape of the numerical spectrum. Using linear GK
eigenfunctions for KAWs enables the determination of
energy spectra for the electric-field fluctuations (E?) and
for the fluctuations of the magnetic field strength (�Bk).
The model works well without fine-tuning, for a range of
values of the constant; this is because the damping is small
in this simulation and our model captures the transition
from Alfvénic to KAW turbulence. The agreement be-
tween the analytical model and the simulations is a non-
trivial result: it suggests that the linear damping rate does
not significantly underestimate the rate at which the elec-
tromagnetic energy is dissipated in the nonlinear simula-
tions. Future simulations will determine whether stronger
linear damping can account for the steeper spectra often
observed in the solar wind.

Conclusions.—We have presented first-of-a-kind kinetic
simulations of turbulence in a weakly collisional, magne-
tized plasma. The ion-gyroscale turbulent fluctuations si-
mulated here represent the fate of a larger-scale MHD
cascade. The qualitative agreement between our simula-
tions and solar-wind measurements [16] supports theoreti-
cal models in which the turbulent fluctuations in the solar
wind have frequencies well below the ion cyclotron fre-
quency even when the cascade reaches the (perpendicular)
scale of the ion Larmor radius. The observed break in the
magnetic-energy spectrum in the solar wind is inferred to
correspond to a transition to kinetic-Alfvén-wave turbu-
lence, not to the onset of ion cyclotron damping. Although
half a billion mesh points were used in the case of Fig. 3,
the resolution in velocity space is still not fully sufficient to
draw detailed conclusions about the turbulent heating.
Nonetheless, the agreement between the simulations and
an analytical cascade model based on linear damping rates
implies that the latter do not significantly underestimate the
true damping in a turbulent collisionless plasma. Future
simulations will probe a range of plasma parameters, in-

cluding more heavily damped regimes, that will allow a
more quantitative study of the role of collisionless damping
in turbulent plasmas. The first results reported in this Letter
demonstrate that such kinetic simulations of plasma turbu-
lence may be undertaken with some confidence, using
existing computational resources.
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