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We study the effect of a thermal environment on adiabatic quantum computation using the Bloch-
Redfield formalism. We show that in certain cases the environment can enhance the performance in two
different ways: (i) by introducing a time scale for thermal mixing near the anticrossing that is smaller than
the adiabatic time scale, and (ii) by relaxation after the anticrossing. The former can enhance the scaling of
computation when the environment is super-Ohmic, while the latter can only provide a prefactor
enhancement. We apply our method to the case of adiabatic Grover search and show that performance
better than classical is possible with a super-Ohmic environment, with no a priori knowledge of the energy
spectrum.
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Quantum computation (QC) aims to harness the physical
resources made available by quantum mechanics to gain an
advantage over classical computation. A major obstacle to
construction of a large scale quantum computer is loss of
coherence resulting from uncontrolled coupling to the
environment. In principle, environmental effects may be
circumvented by the use of quantum error correction [1–
4]. In practice, however, such schemes require significant
overhead. It is therefore likely that many noisy qubits will
be available before many error-corrected logical qubits are.

This observation motivates the search for models of QC
with intrinsic resistance to noise. One such example is
adiabatic quantum computation (AQC) [5–7]. Here we
investigate a regime in which weak coupling to an environ-
ment can improve the performance of AQC.

In AQC, information is stored in the ground state of a
quantum system and manipulated by control of the system
Hamiltonian. An AQC is operated by deforming an initial
Hamiltonian Hi into a final Hamiltonian Hf through inter-
mediatesHS � �1� ��t��Hi � ��t�Hf, with ��t� changing
from 0 to 1 between the initial (ti � 0) and final (tf) times.
If the evolution satisfies the adiabatic condition (@ � kB �
1 throughout) jh1jdH=dtj0ij � g2���, where g��� is the
energy gap between the ground (j0i) and first excited (j1i)
states, then the system will be in the ground state of Hf at
tf with probability close to 1, and the solution may then be
read out [8]. In a global adiabatic scheme, � � t=tf and the
adiabatic condition must be satisfied for the smallest gap
gm. If g��� is known, one can choose d�=dt / g2��� to
enhance the performance using a local adiabatic scheme
[9]. Here, we assume no a priori knowledge of the energy
spectrum, and use � � t=tf throughout. The amount of
time required to successfully run a computation is deter-
mined by the minimum gap between the first two energy
levels, gm, along the path connecting Hi and Hf. In order
for the evolution to remain adiabatic throughout, the total
time required is tf / 1=g2

m.

Here we analyze the behavior of AQC in the presence of
a thermal environment with temperature T 	 gm. We
restrict our analysis to problems in which the performance
is limited by a single minimum gap of the type of an energy
level avoided crossing. This corresponds to a first order
quantum phase transition, which is believed to be hardest
for AQC [10].

In general, if there are l energy levels within the range T
from the ground state, then thermalization can suppress the
ground state probability by at most a factor of l�1. For a
Gaussian distribution of the levels, l is polynomial in the
number of qubits n, if T is much smaller than the total
spectral width. In this case, one may compensate for ther-
malization by repetition with a polynomial overhead.
Moreover, the transition times are expected to be very
long, probably longer than the computation time, otherwise
classical annealing would yield the solution efficiently.
This is different from an anticrossing, at which point, as
we shall see, the transition rate is sharply peaked. We
therefore only focus on the anticrossing and use 2-level
approximation.

Let us assume that the minimum gap occurs at � � �m.
We adopt a new coordinate, � � 2E��� �m�, where E is
an energy scale characterizing the anticrossing. Close to
the anticrossing, the system Hamiltonian within the 2-level
approximation is well described by

 HS � ����z � gm�x�=2; (1)

and the gap between the first two states is well approxi-

mated by g �
�����������������
�2 � g2

m

p
. Here �x;z are the Pauli matrices in

the 2-level subspace. Because of the Landau-Zener tran-
sition [11,12], the probability of being in the excited state
at t � tf is given by

 P1f � e�tf=ta ; (2)

where ta � 4E=�g2
m is the adiabatic time scale (see Table I

for definition of all time scales).
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We incorporate the environment by assuming that qubits
are coupled to bosonic heat baths that are in equilibrium,
with gm � T � E. The total Hamiltonian is H � HS �
HB �Hint, where HB and Hint are bath and interaction
Hamiltonians, respectively. We also assume that in the 2-
level subspace the interaction Hamiltonian has the form

 Hint � Q 
 �z; (3)

where Q is an operator representing the collective effect of
all baths on the 2-state problem. Equations (1) and (3)
capture the physics of a wide range of problems that
have one sharp anticrossing.

For slow evolutions of the Hamiltonian considered here,
as long as the correlation time of the environment is shorter
than decay times of the system, one can safely assume
Markovian approximation [13]. Writing the density matrix
as � � �1� � � ��=2, the 2-state Bloch-Redfield equations
are [14]
 

_�x ��~��x� ��y�
�
�
gm
��

gm
�
�’

�
�z��

g
gm
�eq;

_�y ����x� ~��y�gm�z; _�z ��gm�y;
(4)

where � � �gm=g�
2�S�g� � S��g��, �’ � 2��=g�2S�0�,

~� � �� �’, and �eq � �S�g� � S��g��=�S�g� �
S��g��. Here, the bath’s spectral density is defined as
S�!� �

R
1
�1 dte

i!thQ�t�Q�0�i, where h. . .i denotes aver-
aging over environmental degrees of freedom. The prefac-
tor �gm=g�2 makes � sharply peaked at � � 0 as expected.

For a bosonic environment [15], S�!� � J�!�=�1�
e�!=T�, where J�!� � �!j!=!cj

se�!=!c , with !c being
a cutoff frequency which is assumed to be larger than all
other relevant energy scales in the system. Therefore

 �� �gm=g�
2J�g�coth�g=2T�; �eq � tanh�g=2T�: (5)

Here, we focus only on Ohmic (s � 0) and super-Ohmic
(s > 0) cases for which the correlation time of the bath
(1=!c) is short compared to the relevant time scales. A
sub-Ohmic (s < 0) environment has a large correlation
time; hence, the Markovian approximation and therefore
Bloch-Redfield equation do not hold [16].

We are interested in problems with small gap, gm �
T � E. We divide the evolution into three regions, as
shown in Fig. 1. In region I, the gap is larger than T and
thermal transitions are suppressed. In region II, both ther-
mal and nonadiabatic transitions between the two states are
possible. In region III, the system again has a gap larger
than T, but now the system can relax from the excited state
to the ground state. Such relaxation can only increase the
probability of success.

Let us start by finding the excitation probability imme-
diately after region II. Assuming T 	 g, which holds for
most of the region, we have �eq � 0, and

 � � �0
g2
m

g2

�
g
!c

�
s
; �’ �

�
�0�2=g2 s � 0;
0 s > 0;

(6)

where �0 � 2�T. We perform the calculation in the re-
gime gm � ~�. The presence of the damping terms in the
first two equations in (4) will make �x and �y decay in a
time scale (1=~�) much shorter than the relevant time
scale for �z (1=gm). Thus, to find the slow evolution of
�z, one can use the stationary values for �x and �y,
obtained from _�x;y � 0. Solving the first two equations in
(4) for �y and substituting into the third equation, we get

 _� z � ������z; ���� � g2�=�~�2 � �2�: (7)

Here, � is the rate of transition between the two branches
of energy that meet at the anticrossing. Integrating (7), we
find

 ln
�z�t�
�z�0�

� �
Z t

0
dt0���� � �

Z ��t�

�T

d�
_�

����; (8)

which leads to

 ��� � T� � ��0�e�tf=td ; (9)

where td is a characteristic time scale that describes the
thermal mixing near the anticrossing, and is given by

 

1

td
�

1

tf

Z 1
�1

d�
_�

����: (10)

We have taken the integration limits to infinity assuming
that ���� is sharply peaked at � � 0, which is the case for
s < 1. Using the initial condition �z�0� � 1, the excitation
probability after region II is approximately

 P1�� � T� � 1
2�1� e

�tf=td�: (11)

For a linear time evolution (i.e., � � t=tf), one has _� �
2E=tf. If the environment is Ohmic, then s � 0 and ~� �
�0 is a constant. Therefore

gm

0
0

0.5

1

0.5 1

T

I II III

E
E

n
/

FIG. 1 (color online). Ground and first excited states of a
system with one anticrossing at � � 0:5. The three regions are
identified in such a way that g > T for regions I and III, and
g < T for region II.

TABLE I. Characteristic time scales for tf.

ta Time scale imposed by nonadiabatic transitions
td Time scale imposed by thermal mixing
tr Time scale imposed by relaxation after the anticrossing
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 td �
�
g2
m

2E

Z 1
�1

�0d�

�2
0 � �

2

�
�1
�

2E

�g2
m
�
ta
2
; (12)

in agreement with Kayanuma [17] and Ao and Rammer
[18]. For fast evolutions (short tf), (11) behaves the same
way as a closed system (2), while in the slow regime (long
tf), (11) gives a ground state probability of 1=2, corre-
sponding to the complete mixture of the two states.

For a super-Ohmic bath (s > 0), �’ � 0, hence ~� �
� � �0�gm=g�2�g=!c�

s. In such a case,

 

1

td
�

1

2E

Z 1
�1

d�
�gs

�2g2s�4 � �2 ; (13)

where � � �0g
2
m=!

s
c. The important contribution to the

integral comes from regions with g � j�j �1=�3�s� 	
gm, where the inequality follows from gm �
�0�gm=!c�

s � ~��0�, which was our initial assumption.
This condition, however, can be satisfied in the limit of
gm ! 0, only if s < 1. Replacing � � �1=�3�s�x, we find

 td � �sE
�
!s
c

�0g2
m

�
2=�3�s�

;
1

�s
�
Z 1

0

x4�sdx

1� x6�2s : (14)

Since �s is independent of gm, we have td / g
�4=�3�s�
m

which scales better than ta  g�2
m . It is easy to check that

the integral is convergent for s < 1. For s > 1, the condi-
tion gm � ~� cannot be satisfied in the limit of gm ! 0,
invalidating our approach.

We now study the effect of relaxation after the anticross-
ing (region III). From (7), we see that ���	 ~�� � �. The
probability of ending up in the excited state becomes

P1f�� � E� � P1�� � T�e�
R
E

T
�d�= _�. Using (5) and as-

suming coth�g=2T� � 1, which holds for most of the re-
gion, and �	 gm, we find

 

1

2E

Z E

T
�d� �

�g2
m

2E!s
c

Z E

T
�s�1d� �

1

tr
: (15)

Here we have defined a third time scale tr that character-
izes such a relaxation process. One can write tr � ta=	s,
where

 	s �
2�
�

�
ln�E=T� s � 0;
1
s��E=!c�

s � �T=!c�
s� s > 0:

(16)

Notice that tr slowly decreases with T.
The probability of success, i.e., the final ground state

probability, is therefore given by

 P0f�t� � 1� 1
2�1� e

�tf=td�e�tf=tr : (17)

It reaches 1=2 in a time tf  td, but approaches 1 in a
time tf  tr. If td < tr, it is advantageous to run the system
faster but repeat the process. The relevant time scale for
computation will then be 2td, which for an Ohmic envi-
ronment is ta / 1=g2

m, the time scale for a closed AQC.
On the other hand, for super-Ohmic cases with 0< s < 1,
one has td / g

�4=�3�s�
m , which shows an improved perform-

ance compared to the closed AQC, as gm ! 0. The per-
formance becomes better as s gets closer to zero, until
s � 0 (i.e., Ohmic) at which point the low frequency part
of the noise spectrum becomes nonzero and the perform-
ance goes back to 1=g2

m.
This sudden change at s � 0 is related to the sharp jump

in S�!� / j!js at ! � 0, from a nonzero value at s � 0 to
zero at s > 0. However, the S�0� that appears in the defi-
nition of �’ is not exactly zero frequency, but really the
low frequency component of the noise, i.e., S�1=tf�. As s
becomes smaller, the low frequency component gets larger
and eventually dominates the ~� in (8), resulting in a smooth
transition to the Ohmic behavior. Without the S�0� term, an
Ohmic environment would yield a td  g

�4=3
m behavior.

Here, a competition between pure relaxation, which tends
to enhance the performance, and pure dephasing (due to
the low frequency noise) which works against it, is notice-
able. Taking both processes into account, in the case of
Ohmic environment, the performance of the system will be
the same as that for a fully coherent AQC.

For systems with td > tr, the computation time scale will
be determined by tr and the ground state probability, for
small tf, will basically have the form P0f�t� � 1� e�tf=tr .
If tr < ta, then we will again have a better performance
compared to a closed AQC. However, as we saw before, tr
has the same g�2

m dependence as ta. Thus, any speedup over
AQC by this process can only be via a prefactor 	s (if it is
larger than 1). The enhancement reported in Ref. [7] falls
in this category since the number of qubits considered was
not large enough to obtain small gm and therefore thermal
mixture at the anticrossing.

We should emphasize that Eq. (16) is calculated assum-
ing that the 2-state approximation holds for the entire
range. While this can be the case for some Hamiltonians,
such as adiabatic Grover search [9], it is not true in general.
In fact, it is very difficult to calculate tr for a general
problem. However, one would not expect this type of
relaxation, which is equivalent to classical annealing, to
give any scaling benefit over classical computation.

We now apply our approach to the adiabatic implemen-
tation of Grover’s search algorithm [9,19]. In this case, the
explicit dependence of gm on the problem size may be
obtained, and hence all quantities may be calculated in
terms of the size of the unstructured search problem N �
2n. Following Roland and Cerf [9], we use the Hamiltonian
HS � E�1� �1� ��j�ih�j � �jmihmj�, where jmi is the
marked state to be found and j�i � �N��1=2P

ljli.

Defining � � E�2�� 1�, the gap is g��� ����������������������������������������������
E2=N � �1� 1=N��2

p
. The minimum gap, gm � E=

����
N
p

,
lies at � � 0. The third energy level, E2 � E, has (N � 2)-
fold degeneracy. A global adiabatic algorithm (� � t=tf)
results in tf  N=E [20]. Using a local adiabatic algorithm
[9], one can achieve tf 

����
N
p

=E. Because of the large
degeneracy of E2, the 2-level approximation will only be
valid in the temperature regime T � E= logN.
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We consider the implementation of the unstructured
search problem on n qubits, and hence may describe our
noise model in terms of operators acting on these qubits.
We show that the type of 2-level noise model (3) indeed
arises for a general coupling of qubits to the environment:
Hint � �

Pn
i�1�Xi 
 


x
i � Zi 
 


z
i �, where 
�i are the

Pauli matrices for the ith qubit, and Xi, Zi are its corre-
sponding heat bath operators. In the large N limit, the
effective 2-level system and interaction Hamiltonians be-
come (1) and (3), respectively, where Q � 1

2

P
i�Xi � Zi�.

Assuming uncorrelated heat baths, (17) also holds for this
problem with � � 1

4n� ��x � ��z�, where ��x;z are average
friction coefficients for the Xi and Zi operators.

For large n, the scaling of td with N is given by td  N
for Ohmic, and td  N2=�3�s� for super-Ohmic environment
(with linear interpolation). It is clear that for super-Ohmic
environment with s < 1, the scaling is better than that for
classical computation.

We have also performed numerical simulations of adia-
batic Grover search, solving the Bloch-Redfield equations
without the 2-level or large N approximation for 12, 16,
and 20 qubits. Figure 2 plots P0f as a function of tf=ta for a
case with super-Ohmic environment with s � 0:5. As is
clear from the figure, the curves increase faster compared
to a closed system for larger n (smaller gm). This agrees
with the scaling advantage of the noisy system compared
with the closed system according to our analytical
prediction.

To summarize, using the Bloch-Redfield formalism we
have identified 3 time scales for the evolution of AQC and
determined their scalings with gm. We have shown that
relaxation after the anticrossing can only provide a pre-
factor enhancement for computation time. Thermal mixing
at the anticrossing, on the other hand, can enhance the

scaling of the computation if the environment is super-
Ohmic with 0< s< 1, while the same environment will be
destructive for gate model QC. This underlines the impor-
tant difference between the two models in response to the
environment. Finally, we should mention that a presence of
low frequency noise, as in spin environment [21], will
remove the above enhancement.

Discussions with A. J. Berkley, J. B. Biamonte, A. Blais,
E. Farhi, E. Ladizinsky, A. J. Leggett, D. Lidar, A. Maassen
van den Brink, D. A. Meyer, G. Rose, A. Yu. Smirnov,
P. C. E. Stamp, and M. Wubs are gratefully acknowledged.
M. H. S. A. would also like to thank D. V. Averin for point-
ing out the importance of low frequency noise and the
breakdown of the secular approximation in the Bloch-
Redfield formalism.
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FIG. 2 (color online). Probability of success for AGS with 12
(blue or gray), 16 (red or light gray), and 20 (green or dark gray)
qubits, and a super-Ohmic environment with s � 0:5 at T=E �
0:1. The solid and dotted curves are for longitudinal ( ��x � 0,
��z � 0:1) and transverse ( ��x � 0:1, ��z � 0) couplings to the
environment, respectively. The solid black line represents a
closed system ( ��x � ��z � 0), which with the normalized
x axis is independent of n.
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