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Topological winding and unwinding in a quasi-one-dimensional metastable Bose-Einstein condensate
are shown to be manipulated by changing the strength of interaction or the frequency of rotation. Exact
diagonalization analysis reveals that quasidegenerate states emerge spontaneously near the transition
point, allowing a smooth crossover between topologically distinct states. On a mean-field level, the
transition is accompanied by formation of gray solitons, or density notches, which serve as an
experimental signature of this phenomenon.
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Metastability of a physical system leads to a rich variety
of quantum phases and transport properties that are not
present in the ground-state phase. An illustrative example
is superflow and phase slip in a narrow superconducting
channel [1]. Other examples include Feshbach molecules
formed in high rotational states [2] and metastable quan-
tum phases in higher Bloch bands in an optical lattice [3].
Recent experimental advances in cold atoms or molecules
have made it possible to realize excited, metastable states
which persist for a long time. These states provide an
excellent medium in which to investigate fundamental
aspects of condensed matter systems such as topological
excitations and superfluidity [4–7].

It is widely believed that the angular momentum per
particle in a weakly repulsive one-dimensional (1D) super-
fluid ring system [6,7] is quantized at T � 0 and that there
are discontinuous jumps between states having different
values of the phase winding number. In this Letter, we
point out that this applies only to the ground state; con-
tinuous transitions do in fact occur between metastable
states of repulsive condensates. The underlying physics
behind this phenomenon is the emergence of a dark or
gray soliton train [8] which bifurcates from the plane-wave
solution and carries a fraction of the quantized value of the
angular momentum.

Starting with mean-field theory for scalar bosons subject
to rotation, we proceed through progressively deeper levels
of insight into the quantum many-body nature of this
problem, making a link between semiclassical and quan-
tum solitons in metastable states. We find that the phase
slip, which allows a smooth crossover between topologi-
cally distinct states, is caused by a quantum soliton. The
latter consists of a linear superposition of the rotationally-
invariant many-body eigenstates of the Hamiltonian [9]. In
both Boguliubov theory and quantum many-body theory
the broken-symmetry soliton state is shown to be stable
against perturbation.

This phenomenon can be realized by hot atoms confined
in fast-rotating circular waveguides or toroidal traps [10].

First, to obtain a metastable uniform condensate one
quickly stops the rotation and then lowers the temperature.
Second, one adiabatically changes the angular frequency
of the trap in the presence of a small arbitrary perturbation
in the trapping potential. This causes atoms to adiabatically
take the higher-energy path of a metastable soliton state, as
we will show. Third, one stops the adiabatic change in the
frequency at the correct point to arrive at a different wind-
ing number. All of these processes can occur continuously.

We consider a system of N bosonic atoms in a quasi-1D
torus with radius R, under an external rotating drive
with angular frequency 2�. The length, angular mo-
mentum, and energy are measured in units of R, @, and
@

2=�2mR2�, respectively. The Hamiltonian is given by the
Lieb-Liniger Hamiltonian in a rotating frame of reference
[11,12],

 Ĥ �
Z 2�

0
d�� ̂y��i@� ���2 ̂� g1D ̂

y2 ̂2=2�; (1)

where g1D characterizes the strength of the s-wave inter-
atomic collisions in one dimension [13] rescaled by
@

2=�2mR�, � is the azimuthal angle, and the bosonic field
operator satisfies periodic boundary conditions:  ̂��� �
 ̂��� 2��. Since the Hamiltonian is periodic with respect
to �, the properties of the system are periodic in � with
period 1 [14], in direct analogy to the reduced Brillouin
zone in a Bloch band [7,15]. Without loss of generality we
will henceforth restrict ourselves to � 2 �0; 1�. The
Hamiltonian is integrable via the boson-fermion mapping
in the Tonks-Girardeau (TG) limit g1D � N [16], and via
the Bethe ansatz in the weak-interaction limit g1DN &

O�1� as well as intermediate-interaction regimes.
We first show how continuous changes in the angular

momentum occur in the weak-interaction regime for solu-
tions of the Gross-Pitaevskii equation (GPE) ���i@� �
��2 � g1DNj ���j

2� ��� � � ���, where  is the order
parameter normalized to unity and ’ 	 Arg� � is its
phase. The single valuedness of the wave function requires
’��� 2�� � ’��� � 2�J, where J 2 f0;
1;
2; . . .g is
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the topological winding number. Stationary solutions of
the GPE for g1D � 0 are either plane-wave states  ��� �
eiJ�=

�������
2�
p

or a gray soliton train [8] whose amplitude
and phase are given by j ���j � A�1� �dn2�jK���
�0�=�; k��1=2, and ’��� � ��� B���; jK���
�0�=�; k�, respectively. Here the amplitude A 	�������������������������������������
K=�2��K � �E��

p
; the phase prefactor B 	 �S=jK��������������������������

gsnhsn=2fsn

p
; there are j density notches in the soliton

train; � � �2j2K2=gsn 2 ��1; 0� characterizes the depth
of each density notch; k 2 �0; 1� is the elliptic modulus;
K�k�, E�k�, ���; u; k�, are elliptic integrals of the first,
second, and third kinds; and dn�u; k� is the Jacobi dn
function. The degeneracy parameter �0 indicates that the
soliton solutions are broken-symmetry states. We define
fsn � �g1DN=2� 2j2K2 � 2j2KE, gsn � fsn � 2j2K2,
hsn � fsn � 2k2j2K2, and S � 1 for 0 
 �< 0:5, S �
�1 for 0:5 
 �< 1. Then � � �2�kjK�2=fsn 
 0 , and
only when soliton solutions exist [17] is k � 0. In the limit
�! �1, fsn approaches zero, and gsn and hsn both ap-
proach finite positive values; consequently, the wave func-
tion approaches the Jacobi sn function, which corresponds
to a dark soliton with a �-phase jump at �0. In the opposite
limit �! 0, both the amplitude and phase approach those
of the plane-wave solution with the same phase winding J.
These limiting behaviors indicate that continuous change
in topology of the condensate wave function is possible, as
illustrated in Fig. 1 (i)–(vi). Henceforth, we consider the
single soliton j � 1 for simplicity, but our discussion holds
for arbitrary soliton trains j > 1.

Bifurcation of the soliton train from the plane wave
constitutes a second-order quantum phase transition with
respect to g1D and/or �. Figure 2(a) shows the energy
difference E�sol�

J � E�pw�
J between the two solutions

 

E�pw�
J � ��� J�2 � g1DN=�4��;

E�sol�
J � g1DN=�2�� � �3KE� K2�2� k2��=�2

� 4K2�3E2 � 2�2� k2�KE

� K2�1� k2��=�3�3g1DN�:

This kind of bifurcation does not occur from the ground-
state energy. However, for metastable states a bifurcation
can occur between the plane-wave state and the soliton

state with the same winding number J. After bifurcation,
the soliton energy E�sol�

J becomes larger than E�pw�
J . Further-

more, at � � 0:5, E�sol�
0 and E�sol�

1 are degenerate with a

�-phase jump in the condensate wave function. The
derivatives of the energies @E�sol�

J =@� and @E�pw�
J =@�

have a kink at the boundary as can be verified analytically.
This identifies the second-order quantum phase transition
[18], which occurs along a curve in the �-g1D plane.

Figures 1 (i)–(vi) illustrate a continuous change in the
topology along a higher-energy, soliton path shown in
Fig. 2(a) with white arrows. Following this path in Fig. 1,
as � increases starting from (i) the plane wave with J � 1,
(ii) solitons start to form past a critical point �cr. (iii) The
density notch deepens for �cr 
 � 
 0:5. At � � 0:5 it
forms a node, the phase of the soliton jumps by �, and the
energies of the solitons with phase winding number 1 and 0
are degenerate. (iv),(v) The soliton with phase winding
J � 0 deforms continuously as � increases. (vi) Finally,
the state goes back to the plane-wave state with phase
winding J � 0 [19].

The angular momentum L=N �
R
d� ���i@�� of

the metastable states changes continuously along the soli-
ton path. For the plane-wave state, L�pw�

J =N � J is quan-
tized; in contrast, for the soliton L�sol�

J =N � ��
S

���������������������
2fsngsnhsn

p
=�g1DN�

2� is noninteger, as shown in
Fig. 2(b). Thus a continuous change of angular momentum
is possible for 1D Bose systems by taking the metastable
states with energy slightly higher than that of the ground
state.

We next investigate the stability of the metastable states
using Boguliubov theory [20,21], and identify the curve in
the �-g1D plane where the soliton solutions bifurcate from
the plane-wave solutions. A stationary solution  of the
GPE subject to a small perturbation � evolves in time as
~ �t� � e�i�t� �

P
n��une

�i�nt � �v�ne
i��nt��, where (un,

vn) and �n are eigenstates and eigenvalues of the
Boguliubov–de Gennes equations (BdGE), and n denotes
the index of the eigenvalues.

For the plane-wave state with phase winding J, the
eigenvalues of the BdGE are obtained as ��J;pw�

n �

�n2�n2 � g1DN=���1=2 � 2n��� J�. Then ��J�1;pw�
�1 is

negative, monotonically increases for � 2 �0;�cr�, and
crosses zero at �g1DN�cr=�2�� � 2��cr � J�2 � 1=2 � 0.

FIG. 1 (color online). Amplitude (solid curves with the left reference), and phase (dotted curves with the right reference) of
metastable states of the GPE for g1DN � 0:6�. Uniform solutions with different values of the phase winding (i) J � 1, and (vi) J � 0
are smoothly connected through the broken-symmetry gray soliton (ii)–(v) with a self-induced phase slip at � � 0:5.
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Thus the metastable state  � ei�=
�������
2�
p

is thermodynami-
cally unstable. The plane-wave limit of the soliton solu-
tions �! 0 occurs when (g1DN, �) approach their critical
values from above. We also obtained the eigenvalues of the
BdGE when  is taken as a soliton. The eigenstates ob-
tained from a soliton involve the Nambu-Goldstone mode
��J�1;sol�

NG , i.e., the zero-energy rotation mode, associated
with the rotational symmetry breaking of the soliton so-
lution. At the critical values of (g1DN, �), ��J�1;pw�

�1 �

��J�1;sol�
NG and other eigenvalues ��J;sol� are nearly degener-

ate with ��J;pw�. There is no negative Boguliubov mode in
the soliton regime. Thus the soliton state is linearly stable.

Finally, we investigate how continuous change in the
angular momentum per particle observed in the mean-field
theory is described in terms of quantum many-body theory.
Lieb derived two kinds of excitation branches in the ther-
modynamic limit, ‘‘type I’’ and ‘‘type II’’ excitation
branches of Eq. (1) with � � 0 [11]. The type II excitation
was shown to be a dark soliton branch [22]. We also
determined low-lying excitation energies in a finite-size
waveguide in a wide range of g1DN via the Bethe ansatz
[23–25].

In order to study the metastable states we need to in-
vestigate the N th order highly excited states. We diagonal-
ize Eq. (1) in a basis which provides equivalent results to
those obtained with the Bethe ansatz [26] for the purposes
of physical insight. The basis is taken as jn�1; n0; n1; n2i,
subject to conditions

P
lnl � N and

P
llnl � L, where nl is

the number of atoms with single-particle angular momen-
tum l and L 2 f�N; . . . ; 2Ng is the total angular momen-
tum. Figure 3(a) shows the energies EL 	 hL;NjĤjL;Ni
of yrast states jL;Ni, i.e., the lowest-energy state for a
fixed value of L and N. The index N will be dropped, as it
is fixed. The curvature of the surface is independent of N
but the density of states with respect to L=N increases
as N becomes larger. Three kinds of states appear in this
energy landscape: (i) Ground state: The ground state
of the Hamiltonian is jL � 0i with energy EL�0=N ’
�2 � g1DN=�4�� for � 2 �0; 0:5�, and jL � Ni with en-

ergy EL�N=N ’ ��� 1�2 � g1DN=�4�� for � 2 �0:5; 1�,
respectively. These are in agreement with the mean-field
ground states  � 1=

�������
2�
p

and  � ei�=
�������
2�
p

, respectively.
(ii) Metastable plane-wave states: Similarly, the many-
body counterparts of the metastable plane-wave solutions
of the GP equation are jL � Ni for 0 
 �< 0:5 and
jL � 0i for 0:5 
 �< 1, respectively. (iii) Seeds of
broken-symmetry states: All many-body eigenstates are
rotationally invariant because they respect the symmetry
of the Hamiltonian; i.e., there are no broken-symmetry
eigenstates. However, as shown in Fig. 3(b), the eigenval-
ues fEL�0; . . . ; ENg (densely packed blue curves) cross
each other in between the ground and metastable plane-
wave states, and fEL�1; . . . ; EN�1g become larger than the
metastable plane-wave state energies within a certain range
of �. The regime of this quasidegenerate level crossing can
be identified with the soliton regime given by the mean-
field theory, as we will show. Furthermore, the envelope of
the highest eigenvalues in the quasidegenerate regime co-
incides with E�sol�

J�0;1 in the limit N ! 1. In the absence of
interaction (g1D � 0), all the levels with L 2 f0; Ng are
degenerate for � � 0:5 only. The degeneracy inherent in a
level crossing permits the existence of a broken-symmetry
state; in our case, this is the soliton solution corresponding
to the mean-field theory prediction.

Figure 3(c) shows the two-body correlation function
g�2��� � �0� 	 h ̂y��� ̂y��0� ̂��0� ̂���i=�h ̂y��� ̂���i �
h ̂y��0� ̂��0�i�, where the expectation value is taken with
respect to each yrast state jLi. The function g�2� is inde-
pendent of � and has a single peak. When L=N is an

FIG. 3 (color online). (a) The lowest energy of the
Hamiltonian for each angular-momentum subspace for N �
40, g1D � 2�� 7:5� 10�3. (b) Enlargement of (a) near the
critical point. Densely packed blue curves are spectra within L 2
f0; Ng. Otherwise the spectra are sparse. (c) Two-body correla-
tion function of eigenstates for each angular-momentum sub-
space. (d) Expectation value of the angular momentum of each
eigenstate, in the presence of symmetry-breaking potential V̂ as
a function of �.

FIG. 2 (color online). (a) Energy difference between the meta-
stable plane-wave and soliton states. The soliton solutions exist
in the area surrounded by two phase boundaries (white dotted
curves). (b) Corresponding angular momentum. The soliton
solutions make it possible to smoothly connect quantized integer
values of average angular momentum.
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integer, g�2� � 1; when L=N is half- integer, g�2� strongly
deviates from 1. The one-body density g�1� 	
h ̂y��� ̂���i � 2�=N is a constant for any eigenstate,
since the system is rotationally invariant.

In order to force quantum solitons to appear in g�1�, we
add a symmetry-breaking perturbation of the form V̂ �
"
P
l2f�1;0;1;2g�ĉ

y
l�1ĉl � h:c:�, "� g1D. The total angular

momentum L is no longer a good quantum number, and
the eigenvalue problem is thus given in a general form,
�Ĥ � V̂�j�ni � Enj�ni where n 2 f0; 1; . . .g is the energy
eigenvalue index. Employing the basis jLi, where L 2
f�N; 2Ng, the average angular momentum per particle is
shown in Fig. 3(d) for each eigenstate for " � 5� 10�3.
Outside the soliton regime, angular momenta remain inte-
ger values unaffected by the small perturbation. In the
soliton regime, on the other hand, by a superposition of
eigensates jLi in the absence of the perturbation some of
the angular momenta converge to a noninteger value,
which indeed agrees with L�sol�

J�0;1. We have also calculated
the one-body correlation function g�1� for all eigenstates in
the presence of the symmetry-breaking perturbation, and
confirm that g�1� has a single density notch in the soliton
regime with the depth close to the mean-field gray soliton.

In conclusion, we found a denumerably infinite set of
paths to connect plane-wave states via soliton trains in a
metastable system of scalar bosons on a ring. Associated
with this transition, the energy of the solitons bifurcates,
and a continuous change in the angular momentum be-
comes possible in the mean-field theory. We made a link
between these mean-field results and the full quantum
theory by showing that quasidegenerate energy levels are
related to the formation of quantum solitons.
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