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Network structure strongly constrains the range of dynamic behaviors available to a complex system.
These system dynamics can be classified based on their response to perturbations over time into two
distinct regimes, ordered or chaotic, separated by a critical phase transition. Numerous studies have shown
that the most complex dynamics arise near the critical regime. Here we use an information theoretic
approach to study structure-dynamics relationships within a unified framework and show that these
relationships are most diverse in the critical regime.
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The structural organization, or topology, of a complex
system strongly constrains the range of dynamical behav-
iors available to the system. Understanding structure-
dynamics relationships in networks is a major goal of
complex systems research [1,2]. However, general prin-
ciples behind such relationships are still lacking, in part
due to the lack of sufficiently general formalisms for study-
ing structure and dynamics within a common framework.
Numerous relationships between specific structural and
dynamical features of networks have been investigated
[3–7]. For example, structure can be studied by means of
various graph-theoretic features of network topologies
such as degree distributions [8] or modularity [9], or in
terms of classes of updating rules that generate the dynam-
ics [4,5]. Aspects of dynamical behavior include transient
and steady-state behavior and the response of the system to
perturbations [6,10].

Relating structure to dynamics is important for under-
standing emergent behaviors because the structure in a
complex system directly affects emergent properties such
as robustness, adaptability, decision making, and informa-
tion processing [6,11]. An important aspect of many com-
plex dynamical systems is the existence of two dynamical
regimes, ordered and chaotic, with a critical phase transi-
tion boundary between the two [12–14]. These regimes
profoundly influence emergent dynamical behaviors, and
can be observed in different ensembles of network struc-
tures. Networks operating in the ordered regime are in-
trinsically robust, but exhibit simple dynamics. This
robustness is reflected in the dynamical stability of the
network both under structural perturbations and transient
perturbations. Contrary to this, networks in the chaotic
regime are extremely sensitive to small perturbations,
which rapidly propagate throughout the entire system and
hence fail to exhibit a natural basis for robustness and
homeostasis. The phase transition between the ordered
and chaotic regimes represents a trade off between the

need for stability and the need to have a wide range of
dynamic behavior to respond to a variable environment. It
has long been hypothesized that biological networks oper-
ate near this phase transition [10]. Recent evidence sug-
gests that biological networks are not chaotic [15,16].

A theme that has emerged in many contexts in systems
theory is that complex systems operating near the phase
transition exhibit maximally ‘‘interesting’’ dynamics [17–
22]. Complex coordination of information processing
seems to be maximized near the phase transition. Informa-
tion theory provides a common lens through which we can
study both structure and dynamics of complex systems
within a unified framework. Indeed, since network struc-
tures as well as their dynamic state trajectories are objects
that can be represented on a computer, the information
encoded in both can be compared and related. Unlike
Shannon’s information, which is defined in terms of dis-
tributions, Kolmogorov complexity is a suitable frame-
work for capturing the information embedded in
individual objects of finite length [23].

Recent developments in information theory have dem-
onstrated that Kolmogorov complexity can be used to
define an absolute information distance between two ob-
jects [24,25], called herein universal information distance.
This distance metric is universal in that it can be applied to
any objects that can be stored on a computer (e.g., net-
works or genome sequences), and uniquely specifies an
information distance without parameters of any kind. Thus,
it is suitable for comparing the information content of two
objects. Although this distance is, like the Kolmogorov
complexity itself, uncomputable, it can be approximated
by real-world data compressors (herein, gzip and bzip2) to
yield the normalized compression distance (NCD) [25],
defined as

 NCD �x; y� �
C�xy� �minfC�x�; C�y�g

maxfC�x�; C�y�g
; (1)
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where C�x� is the compressed size of x and xy is the
concatenation of the strings x and y. Cilibrasi and
Vitanyi [26] have demonstrated that the NCD can be
used for clustering using a real-world compressor with
remarkable success, approximating the provable optimality
of the (theoretical) universal information distance.

Herein we apply the NCD to various classes of networks
to study their structure-dynamics relationships. The pro-
posed methods can be applied in principle to any model
class that can be represented on a computer. We can
represent the state of a network by a set of N discrete-
valued variables, �1; �2; . . . ; �N. Examples include
Boolean networks (�n 2 f0; 1g) [10,12,27], ternary net-
works (�n 2 f0; 1; 2g), and so forth, depending on the level
of detail desired.

To each node �n we assign a set of kn nodes,
�n1

; �n2
; . . . ; �nkn , which control the value of �n through

the equation �n�t� 1� � fn��n1
�t�; �n2

�t�; . . . ; �nkn �t��. In
the case of Boolean networks, we choose the functions fn
randomly from the set of all possible Boolean functions
such that for each configuration of its kn arguments, fn � 1
with probability p, known as the bias. The average of kn,
denoted by K, is called the average network connectivity.
Here, we consider two types of wiring of nodes: (1) ran-
dom, where each node has exactly K inputs chosen ran-
domly; and (2) regular, where nodes are arranged on a
regular grid such that each node takes inputs from its K
neighbors. For random wiring the critical phase transition
curve is defined by 2Kp�1� p� � 1 [13]. Thus, for p �
0:5 (unbiased) K � 1, 2, and 3 correspond to ordered,
critical, and chaotic regimes, respectively.

Making use of the universal information distance as
approximated by the NCD, we are able to compare net-
works without reducing them to arbitrary sets of features
(e.g., graph properties). Indeed, the NCD uses the infor-
mation and regularities embedded in the network structure
to pick up the relative differences in the structural com-
plexities of the networks. In order for NCD to most effec-
tively capture structural differences, a network structure
representation that is most amenable to compression (i.e.,
approximating the Kolmogorov complexity as well as
possible) should be used. For example, for Boolean net-
works, we represent the connections by distances along an
arbitrary linear arrangement of the nodes, making the
regularities in the network structure more easily observ-
able. See Ref. [28] for details on the encoding of network
structures.

To illustrate this, we generated six Boolean network
ensembles (N � 1000) with two different wiring topolo-
gies: random and regular, each with K � 1, 2, or 3. As
Fig. 1 illustrates, all of the different ensembles considered
are clearly distinguishable.

To demonstrate that the NCD is able to capture mean-
ingful structural relationships between networks, we ap-
plied it to compute the pairwise distances between the

metabolic networks of 107 organisms from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
[29] (see Ref. [28] for details). The resulting phylogenetic
tree, generated using the complete linkage method, is
shown in Fig. 2. The organisms are clearly grouped into
the three domains of life. The archaea and eukaryotes
both separate into distinct branches of phylogenetic tree
based on the information content of their metabolic net-
works. The bacteria form three distinct branches, with
parasitic bacteria encoding more limited metabolic net-
works separating from the rest, as has been observed
previously [30]. The fact that the phylogenetic tree repro-
duces the known evolutionary relationships suggests that
the NCD successfully extracts structural information em-
bedded in networks.

We used NCD to study the relationship between struc-
tural information and dynamical behavior within a com-
mon framework. Within each of the above 6 ensembles, we
generated 150 networks and calculated the NCD between
all pairs of network structures and between their associated
dynamic state trajectories. After running the network dy-
namics 100 steps from a random initial state to ensure that
the network is not in a transient state, state trajectories
were collected for 10 consecutive time steps and the states
were concatenated into one vector (see Ref. [28] for details
on the encoding of dynamics). As is the case with the
structure of the networks, NCD is expected to detect the
regularities in the state trajectories and thus uncover their
intrinsic similarities. The relationship between structure
and dynamics was visualized by plotting the structure-
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FIG. 1 (color online). Six ensembles of random Boolean net-
works (K � 1; 2; 3 each with random or regular topology; N �
1000) were used to generate 30 networks from each ensemble.
The normalized compression distance (NCD) was applied to all
pairs of networks. Hierarchical clustering with the complete
linkage method was used to build the dendrogram from the
NCD distance matrix (see Ref. [28] for details on clustering).
Networks from different ensembles are clustered together, in-
dicating that intraensemble distances are smaller than interen-
semble distances.
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based NCD versus the dynamics-based NCD for pairs of
networks within each ensemble (Fig. 3). All network en-
sembles were clearly distinguishable based on their struc-
tural and dynamical information. It is also interesting to
note that within-ensemble distances increase as dynamical

complexity increases. Similarly, as the structure gets more
complex, from regular to random wiring, or with increas-
ing in degree, the within-ensemble distances increase.

The critical ensemble (K � 2, random wiring) exhibited
a distribution that is markedly more elongated along the
dynamics axis as compared to the chaotic and ordered
ensembles, supporting the view that critical systems ex-
hibit maximimal diversity. The wide spread of points for
the critical network ensemble in Fig. 3 shows that their
dynamics range between those of ordered and chaotic
ensembles. Indeed, very different network structures can
yield both relatively similar and dissimilar dynamics,
thereby demonstrating the dynamic diversity exhibited in
the critical regime. Thus, the universal information dis-
tance provides clear evidence that the most complex rela-
tionships between structure and dynamics occur in the
critical regime.

In summary, we have demonstrated that NCD is a
powerful tool for extracting structure-dynamics relation-
ships. It is fascinating that the analyses presented herein
are possible using only the compressibility of a file encod-
ing the network or its dynamics without needing to select
any particular network parameters or features. This ap-
proach allows us to study, under a unified information
theoretic framework, how a change in structural complex-
ity affects the dynamical behavior, or vice versa.

This work was supported by NIH-GM070600 (I. S.,
S. A. K.), NIH-GM072855 (I. S.), NIH-P50GM076547
(I. S.), Academy of Finland [Project No. 213462 OY-H,
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FIG. 3 (color online). The NCD applied to network structure
and dynamics. Six ensembles of random Boolean networks (K �
1; 2; 3 each with random or regular topology; N � 1000) were
used to generate 150 networks from each ensemble. NCDs were
computed between pairs of networks (both chosen from the same
ensemble) based on their structure (x axis) and their dynamic
state trajectories (y axis). Different ensembles are clearly dis-
tinguishable. The critical ensemble is more elongated, implying
diverse dynamical behavior.
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FIG. 2 (color online). A phylogenetic tree generated using
NCD applied to all pairs of metabolic network structures from
107 organisms in KEGG. Different domains of life appear in
distinct branches. Bacteria are shown in red (gray), archaea in
blue (black), and eukaryotes in green (light gray). Subclasses of
species within each domain are labeled on the right. Parasitic
bacteria (bottom branch) are separated from the rest as observed
earlier. This separation of the domains of life indicates that the
method is able to discover the fundamental structural differences
in the metabolic networks.
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