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Coevolutionary dynamics is investigated in chemical catalysis, biological evolution, social and
economic systems. The dynamics of these systems can be analyzed within the unifying framework of
evolutionary game theory. In this Letter, we show that even in well-mixed finite populations, where the
dynamics is inherently stochastic, biodiversity is possible with three cyclic-dominant strategies. We show
how the interplay of evolutionary dynamics, discreteness of the population, and the nature of the
interactions influences the coexistence of strategies. We calculate a critical population size above which
coexistence is likely.
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Coevolution with cyclic dominance can lead to oscilla-
tory, chaotic, and stochastic dynamics. For example, such
cycles can be found in biology [1–7] or in social and
economic systems [8,9]. The simplest example for such a
cyclic dominance is the well-known children’s game rock-
paper-scissors, where rock crushes scissors, scissors cuts
paper, and paper wraps rock. Different biological realiza-
tions of this system have been observed. For example, a
cyclic dominance of three male strategies has been re-
ported in lizards [1,2]: Orange-throated males establish
large territories holding several females. These populations
are invaded by males with yellow-striped throats, which do
not contribute to the defense of the territory but sneak on
the females. Such a population of yellow-striped males can
be invaded by blue-throated males, which defend territo-
ries large enough to hold one female which they defend
against sneakers. Once yellow-striped sneakers are rare, it
is advantageous to defend a large territory with several
females and the cycle starts with orange-throated males
again. Another example is the competition between differ-
ent strains of E. coli. Kerr et al. [3,4] observed that cyclic
dominance leads to biodiversity in spatial systems,
whereas two strategies go extinct in mixed systems after
a short time. Such systems have been analyzed by evolu-
tionary game theory in great mathematical detail [10–17].
Based on the replicator dynamics describing the dynamics
in an infinite population, general conclusions on the nature
of the payoff matrix can be made from the observation of
fast extinction. How does this picture change if we tackle
the more realistic case of stochastic dynamics in a finite
population [18–20]? Depending on population size and the
underlying microscopic process [21–24], the resulting dy-
namics can be very different from the replicator equation
results.

Definition of the model.—We first concentrate on the
simplest example of cyclic rock-paper-scissors dynamics,
in which all three strategies are equivalent [25]. Thus, the
game is defined by three payoffs: (i) the payoff against a
dominated strategy (set to 1); (ii) the payoff against a
dominant strategy �s, which we assume to be negative;

(iii) the payoff for a tie (set to 0). Thus, we obtain the
payoff matrix

 

R P S
R
P
S

0 �s 1
1 0 �s
�s 1 0

0
@

1
A : (1)

Only for the standard choice s � 1, we have a zero-sum
game. An intuitive understanding how s influences the
game can be obtained from discussing two relevant cases.
Large values of s will make it successful to avoid losing,
best done with staying with the majority. In this case, a
mixed equilibrium is unstable and ultimately, only one
strategy will survive. For s � 0, it is more important to
win occasionally, such that the mixed equilibrium can
become stable.

Let us first recall the evolutionary dynamics in an infi-
nite population described by the replicator dynamics [10].
In the replicator equation, the frequency (abundance) xk of
strategy k changes proportional to its payoff �k,

 _x k � xk��k � h�i�: (2)

Here h�i is the average payoff in the population. We denote
the frequencies of R, P, S as x, y, z, respectively, with x�
y� z � 1. With the standard assumption that payoffs are
determined from interactions with a representative subset
of the population, we find �R � z� sy, �P � x� sz, and
�S � y� sx. The average payoff is given by h�i � �1�
s��xy� xz� yz� vanishing for the zero-sum game with
s � 1. Equation (2) has an interior fixed point p �
�13 ;

1
3 ;

1
3�. The determinant of the payoff matrix d � 1� s3

determines the dynamics of the system [10]. For d > 0,
which is the case for s < 1,

 H � �xyz � �xy�1� x� y� (3)

is a Lyapunov function with _H < 0 and the interior fixed
point p is asymptotically stable. For d < 0 (s > 1), p is
unstable and the attractor of the system approaches a
heteroclinic cycle at the boundary of the simplex S3.
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Finally, for the zero-sum game with s � 1 and d � 0 the
function (3) is a constant of motion, and the system infi-
nitely oscillates around p. This is not a purely theoretical
exercise: Experiments indicate d > 0 for the Lizard system
[2] and d < 0 for the E. coli system [3]. In theoretical
approaches, often the restriction to s � 1 is made, although
this is a special nongeneric case [11,15,16]. It has been
argued that in this case, limited mobility in a spatially
extended system can promote biodiversity. However, for
s < 1 biodiversity is likely even in a well-mixed population
if the population is larger thanNc. In this Letter, we give an
analytical estimate for this critical population size, depend-
ing on s and the update mechanism. For s � 1 the average
time to extinction scales linearly with the population sizeN
[24]. For s > 1, one expects faster extinction, as the sto-
chastic drift and the instability of the interior fixed point act
jointly. In the most interesting case of s < 1, both forces
work in opposite directions: For N ! 1, the fixed point p
is stable, but a finite N leads to a drift towards the simplex
boundaries.

Evolutionary processes.—To study dynamics in finite
populations, we study microscopic stochastic processes
for the dynamics, which lead to macroscopic equations
of motion for large populations [8,21,22]. As the micro-
scopic dynamics may depend on the system, the respective
biological or behavioral setup may require different inter-
action and competition processes. To demonstrate the ro-
bustness of our results, we consider different birth-death
processes: the frequency-dependent Moran process (MO)
[18–20], and local two-particle interaction processes
[21,22,26–28].

In finite populations with i rock players, j paper players,
and N � i� j scissors players, the payoffs can be calcu-
lated from the equations for infinite N by replacing x!
i=�N � 1�, y! j=�N � 1�, and z! �N � i� j�=�N � 1�.
By dividing by N � 1 and setting the payoff for ties zero,
we formally exclude self-interactions. For the average pay-
off, we have h�i � i

N �
R � j

N �
P � N�i�j

N �S.
In the frequency-dependent Moran process, an individ-

ual reproduces proportional to its fitness. Then, the off-
spring replaces a randomly selected individual [25]. The
transition probabilities of the possible six hopping events
are given by (TRS :� TR!S)

 TRS �
1

2

1� w� w�S

1� w� wh�i
i
N
N � i� j

N
; (4)

 TSR �
1

2

1� w� w�R

1� w� wh�i
i
N
N � i� j

N
; (5)

and TSP, TPS, TPR, TRP are obtained by cyclic permutation
of (R, P, S) and (i, j, N � i� j). Fitness is a convex
combination of a constant background fitness (set to 1)
and the payoff. The parameter w> 0 controls the intensity
of selection; random genetic drift is obtained for w! 0.
For better comparison with the processes below, we have
introduced an additional factor 1=2.

Selecting an individual proportional to fitness requires
knowledge about every payoff in the population. In many
cases, it is more realistic to assume that competition occurs
locally between two individuals. One process of this type is
the local update (LU) process [21,22], where one individ-
ual b is selected randomly for reproduction, compares with
annother randomly chosen individual a, and changes strat-
egy with probability 1

2 �1� w��a � �b�� [29]. In general,
the reproductive fitness can depend in a nonlinear way on
the payoff difference between two competing agents. as in
the Fermi process (FP) [26–28].

We now unify the processes by means of a reproductive
function,

 �MO�b! a� �
1

2

1� w� w�a
1� w� wh�i

; (6)

 �LM�b! a� � �1� w��a � h�i��=2; (7)

 �LU�b! a� � �1� w��a � �b��=2; (8)

 �FP�b! a� � f1� exp��w��a � �b��g�1: (9)

By (7) we introduce a linearized Moran (LM) process as
first order approximation of the MO in the limit of weak
selection, w! 0. For w � 0, selection is neutral and the
four processes are identical with random drift. Note that for
the Moran processes, ��b! a� depends on the average
payoff, whereas for the other processes two individual
payoffs are involved. The transition probabilities become

 Tba � ��b! a�NaNb=N
2: (10)

For all processes, ��b! a� considers a two-particle
(birth-death) process where an individual with fitness �a
compares with the average fitness h�i or with another
individual �b.

Average drift.—For the replicator equation of the sym-
metric R-P-S dynamics, Eq. (3) defines a constant of
motion. As we are interested in the finite-size corrections,
we can use H as an observable for the distance to the
interior fixed point. For the processes defined above, the
transition probabilities allow to calculate the average
change of the constant of motion within the simplex (1 	
i, j 	 N � 1) as [30]

 

h�Hi �
2

N5

XN�1

i�1

XN�i�1

j�1

�ij�N � i� j��TRS � TSR � TSP � TPS � TPR � TRP� � �i� 1�j�N � i� j� 1�TRS

� �i� 1�j�N � i� j� 1�TSR � i�j� 1��N � i� j� 1�TSP � i�j� 1��N � i� j� 1�TPS

� �i� 1��j� 1��N � i� j�TPR � �i� 1��j� 1��N � i� j�TRP�: (11)
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These expressions give the exact average drift. For the two linear processes, we can approximate the average drift by
replacing the sums by integrals. Using x � i=N, y � j=N, and z � 1� x� y, we find in the continuum limit
 

h�Hi � �
2

N

Z 1

0
dx
Z 1�x

0
dy�y�x� z��TRS � TSR� � x�z� y��TSP � TPS� � z�y� x��TPR � TRP��

�
2

N2

Z 1

0
dx
Z 1�x

0
dy�y�TRS � TSR� � x�TSP � TPS� � z�TPR � TRP��: (12)

From this expression, we can perform a comparison of
h�Hi for the different processes. The neutral case as well
as the linear cases are analyzed below analytically, in Fig. 1
all processes are compared numerically.

For neutral evolution, w � 0, all terms of type TRS �
TSR vanish, and we have TRS � TSR � xz=2, TSP �
TPS � yz=2, TPR � TRP � xy=2, i.e., for w � 0,

 h�Hi �
2

N2

Z 1

0
dx
Z 1�x

0
dy

6xyz
2
�

1

20N2 : (13)

Now we consider the linear terms in w. For the linear
local update, we find TRS � TSR � wxz��S � �R�, thus

 TRS � TSR � wxz��y� z� � s�y� x��: (14)

Because of �LU�b! a� ��LU�a! b� � 1, the terms of
orderN�2 in Eq. (12) cancel. In first and second order ofw,
we have

 h�HiLU �
1

20N2 �
1� s
420N

w: (15)

For the linearized Moran process, the contributions of
the average payoff vanish for the drift term, and the calcu-
lation above reproduces with an additional factor 1=2, i.e.,
TRS � TSR � w

2 xz��
S � �R�. For the diffusion term, we

find

 TRS � TSR � xz
�

1�
w
2
��S � �R � 2h�i�

�
(16)

and cyclic permutations. Thus, we get an additional con-
tribution to the diffusion. In summary, we have

 h�HiLM �
1

20N2 �
1� s
420N

�
1

2
�

1

N

�
w: (17)

Biodiversity threshold.—Both Eqs. (15) and (17) can
change their sign for s < 1 depending on N. For all four
processes, Fig. 1 shows the average drift for different pay-
offs and population sizes. All processes intersect in
�1=�20N2� for s � 1. In this case, we have a zero-sum
game and the average drift is equal to neutral selection. The
finite-size correction to the vanishing drift term of neutral
selection arises from the difference between our micro-
scopic processes and symplectic integrators [31,32]. In the
N ! 1 limit we recover that the stability of the interior
fixed point is governed by the sign of the determinant of the
payoff matrix, d � 1� s3. For s < 1 and N ! 1, trajec-
tories spiral inwards. In finite populations, for s < 1 the
stochastic motion can be reversed as shown in Fig. 1. The
critical population size of the biodiversity threshold is

Nc �
21

w�1�s� for the LU and Nc � 2� 42
w�1�s� for the LM.

The biodiversity threshold Nc for the other process is
computed numerically in Fig. 2. For N >Nc, the N ! 1
behavior is recovered, but for N <Nc the interior fixed
point becomes unstable and the average drift goes towards
the boundaries. So far, we have worked with the specific
payoff matrix Eq. (1). Next, we show that this is a more
general phenomenon. The drift reversal is preserved for
general cyclic payoffs with Nc depending on the payoff
matrix [33]. As an example, we consider the payoff matrix
of the Lizard system [1]. In this case, we find Nc 
 20; see
Fig. 2. More general, we can also address random payoff
matrices with cyclic dominance. Confining a random ma-
trix ensemble (Fig. 2) onto a suitable 2D submanifold [34],
we show that Nc�w� depends only on the location of the
fixed point p, its normalization constant � and the deter-
minant d, i.e., on 4 parameters. Hence the phenomenon is
generic for arbitrary cyclic payoff matrices with d > 0.

To conclude, cyclic coevolution in biological or social
dynamics highlights the importance to study finite popula-
tion effects and the underlying microscopic dynamics.
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FIG. 1 (color online). Drift reversal for the four processes; the
linearized Moran and Fermi process coincide within line thick-
ness. The main panel shows the scaling with population size N
for fixed w � 0:45 and s � 0:8. Full lines and the dotted line
show the numerical solutions of Eq. (11). The dashed lines are
the analytical expansions Eqs. (15) and (17). For small N, the
continuum approximation to the integral leads to deviations.
Inset: Average drift for varying payoff matrix with fixed w �
0:45 and N � 1000. The processes intersect in �H � 1=�20N2�
at s � 1 (d � 0). For N ! 1, this reduces to the expectation
based on the replicator equation, �H � 0 in d � 0. The inter-
section with the horizontal line indicates the drift reversal in
finite populations.
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Recently the influence of the finiteness of the population
has been widely discussed for 2� 2 games [19–23]. But
also in cyclic dynamics the finiteness of the population can
modify the stability conditions derived from the replicator
equation. In this Letter, we have shown that biodiversity
threshold of the population size occurs in generic cyclic
3� 3 games for a positive determinant of the payoff
matrix. Such a positive determinant has been found in
the Lizard system [1,2]. Thus, stability of the coexistence
fixed point can be obtained for sufficiently large popula-
tions, preserving biodiversity even in nonspatial systems or
under strong mobility. In contrast, experiments in well-
mixed populations of the E. coli system indicate a negative
determinant of the payoff matrix.

Here we have demonstrated how nonzero-sum payoffs
can change the stability even in well-mixed systems. Thus
in biological—and corresponding social or economic—
systems, payoff matrix, population structure, population
size, and the microscopic update mechanism determine
the fate of extinction or coexistence.
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FIG. 2 (color online). Critical population size: Intensity of
selection w versus critical population size Nc, where �H
changes its sign for fixed s � 0:8. For N >Nc the drift is
towards the internal fixed point. The dashed lines refer to the
Lizard’s payoff matrix [1] for MO and LU. Under strong
selection w � 1 the LU reverses at Nc � 20. For the restricted
random matrix ensemble (green circles, see text) under LU Nc
coincides with the case of Eq. (1). Each symbol corresponds to a
single random payoff matrix. (inset: scatter plot of payoff entries
in � 1st, � 2nd, and � 3rd column).
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