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Swarming and Swirling in Self-Propelled Polar Granular Rods
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Using experiments with anisotropic vibrated rods and quasi-2D numerical simulations, we show that
shape plays an important role in the collective dynamics of self-propelled (SP) particles. We demonstrate
that SP rods exhibit local ordering, aggregation at the side walls, and clustering absent in round SP
particles. Furthermore, we find that at sufficiently strong excitation SP rods engage in a persistent swirling
motion in which the velocity is strongly correlated with particle orientation.
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Large-scale structures emerge spontaneously in systems
of interacting self-propelled (SP) biological objects such as
flocks of birds, schools of fish, amoebae colonies, as well
as in multirobot swarms [1,2]. Such observations prompted
a discrete-time, discrete-element model by Vicsek er al.
[3], where SP point particles align their velocities with the
average velocity of other particles within a certain fixed-
size neighborhood. This model predicts that as the noise
(temperature) of the system is reduced below a critical
value, the system undergoes a phase transition to a long-
range ordered state which appears to be discontinuous in
the thermodynamic limit [4]. The Vicsek model was gen-
eralized in [5] for SP round particles with an interaction
characterized by a Lennard-Jones—type potential and was
shown to exhibit gas-liquid and liquid-solid transitions to
moving ‘“droplets” and “crystals” of particles.

Further, continuum hydrodynamic-type field models for
populations of SP particles have been derived either with
general symmetry arguments [6] or directly from micro-
scopic interaction rules [7]. While these models allowed
for detailed predictions of the correlation properties within
the ordered state, the shape of particles was not taken into
account. On the other hand, there have been rapid advances
in the theory of ‘“‘active nematics,” or populations of
inelastically interacting rods, both polar [8,9] and apolar
[10,11]. These models predict the onset of a nematic order
when the coupling strength of particle density becomes
sufficiently high, and giant density fluctuations in apolar
rods. Clustering of polar rods was recently found in nu-
merical simulations [12]. On the experimental side, there
has also been growing interest in the nonequilibrium dy-
namics of driven granular rods. Symmetric rods in a vi-
brated container have been shown to form nematic or
tetratic order and under certain conditions exhibit persis-
tent swirling [11,13,14] and giant number fluctuations [15].
At higher densities, rods bounce on one end and travel in
the direction of their tilt due to friction at the contact
between the rod and the substrate [16] and collectively
form large-scale vortices [17,18].
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Here, we study with experiments and simulations, the
collective dynamics of vibrated polar granular rods that
interact only while in contact. The rods have a symmetric
shape, but a nonsymmetrical mass distribution which
causes them to move toward their lighter end when placed
on a vibrating surface. While a single rod reflects off the
side walls of the container, a collection of such rods is
observed to aggregate over time at the boundaries above a
critical excitation. When the magnitude of excitation is
increased further, aggregation at the boundaries is reduced,
and coherent structures are found in the bulk of the con-
tainer. Swirls can be identified in time-averaged velocity
fields, the flow and the rods are aligned, and signatures of
incipient clustering can be observed. To augment these
results and extend them toward larger system sizes, we
perform numerical simulations using a discrete-element
molecular dynamics algorithm. In particular, we show the
importance of particle aspect ratio and driving fluctuations
on the observed pattern formation.

About 103 polar rods were built using white hollow
nylon cylinders of length [ = 9.5 mm and diameter d =
4.76 mm, so the aspect ratio of the rods A, = [/d was fixed
at 2 [Fig. 1(a) inset]. Solid steel cylinders of length
4.75 mm and diameter 2.5 mm were placed snugly in one
end of the nylon tube, which resulted in the center of mass
being displaced by 0.1/ from the geometrical center of the
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FIG. 1 (color online). The distributions of displacements in a
time interval 7 (a) parallel and (b) perpendicular to the axis of
the polar rod (I' = 2). Inset: schematic of the polar rod. The
arrow shows the direction of net motion.
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rod. The total mass of the assembly was 2.20 X 10™* kg.
The coefficient of friction between the rods, as well as the
substrate, is 0.3 £ 0.1. The coefficient of restitution for
rod-rod collisions is very difficult to measure; however, the
normal coefficient of restitution for spheres of the same
material is 0.9. The steel inserts also made the correspond-
ing ends appear somewhat darker and were used to identify
the ““polarity” of the rods. The particles were placed on a
flat anodized aluminum container of radius R = 30d vi-
brated using an electromagnetic shaker with sinusoidal
waveform at frequency 75 Hz and varied driving accelera-
tion I' (scaled by the gravity acceleration) from O to 5. A
digital camera with the spatial resolution of 1000 X 1000
pixels was used to image the motion of rods inside the
container.

First, we studied the motion of a single rod bouncing on
the vibrated plate away from side walls. For I' > 1.5, the
rod shows a robust net motion in the direction of the lighter
end of the rod while taking some apparently random steps
in the other directions as well. A movie of the typical
motion is contained in the supplementary material [19].
By cross-correlating the intensity distribution of the image
of the rod with a mask, we automated finding the position
and the orientation (measured by the angle ¢ to a fixed
axis) of the rod in each frame. By measuring the change in
position over time interval 7, the magnitude of the rod
velocity v, and its direction 6 with respect to a fixed
reference were obtained. The probability distribution func-
tions (PDFs) for the displacement parallel to the rod
vTcos(f@ — ¢) and perpendicular to the rod v7sin(f —
¢) are plotted in Figs. 1(a) and 1(b) with 3 X 10° sets of
measurements. While the PDFs in the perpendicular direc-
tion are centered at zero, the broader PDFs in the parallel
direction are clearly shifted from zero, and this shift grows
as 7 is increased. The mean and the root mean square
velocity increase with I" in our system (see supplementary
material [19]). By imaging from the side, we find that rods
undergo short collisions with the bottom of the container
once every few cycles at random phases of the cycle (see
supplementary material [19]).

The physical mechanism of the directed motion of polar
rods can be understood by extending the arguments devel-
oped for symmetric rods and dimers [16,20]. During a
typical collision of a particle with a horizontal plate, a
large but short impulse of frictional force at the contact
point causes horizontal particle displacement after the
collision. When a symmetrical (apolar) rod bounces sym-
metrically on a vibrated plate, the net displacement after
many collisions is absent, but for an asymmetric particle,
there is a nonzero net horizontal motion. In the case of
polar rods, since the center of mass is displaced from the
geometrical center, the heavy end collides more often with
the plate, and the rod on average travels in the direction of
the light end. It can be shown that the average horizontal
velocity of the rod translation is proportional to the ampli-
tude of the vertical speed of the container, and indeed we
observe that the mean velocity increases with I'.

The collective motion of polar rods was studied by
placing the rods randomly initially inside the container
and then vibrating with various I'. (See the movies in-
cluded with the supplementary material [19].) For I' =
1.7, rods were observed to migrate to the boundary of the
container and aggregate in about 30 seconds [Fig. 2(a)].
Not all rods aggregate at the boundaries, as some rods
gradually rotate and escape from the dense cluster at the
boundary back into the middle of the container. For an
aspect ratio of 1 (spheres), clustering is not observed at
these I'. As T' is increased, so do fluctuations, and the
aggregation at the boundaries becomes less and less pro-
nounced. Although spatiotemporal density inhomogene-
ities persist, the time-averaged number density of the
polar rods appears more or less uniform across the cavity
for I' > 3 [Fig. 2(b)].

Next, we performed ‘“molecular dynamics” simulations
of polar rod motion and interaction. We did not simulate
the details of the vibrational transport of bouncing rods, but
instead assume that the rods were confined to a horizontal
plane. A force acts on each rod along its (horizontal) axis in
the direction of the lighter end. This force was assumed to
be random, with a mean F and variance V. In addition to
the driving force, we assumed that rods experience
velocity-dependent friction with the substrate and inelastic
collisions with other rods. F and V were tuned so the
displacement distribution for a single rod fits the experi-
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FIG. 2 (color online). (a) Rods migrate and aggregate at the
boundaries of a container for modest excitations (N = 500, I" =
2). (b) Aggregation reduces and a homogeneous distribution is
observed as excitation is increased. (N = 500, I' = 4.) (c¢) Area
fraction p(r/R) as a function of distance r from the center of the
container with radius R for N = 900 averaged over 100 frames
at 10 frames per second; open symbols: the results of numerical
simulations for the same system parameters; (d) simulations
show a decrease of clustering as A, is reduced (I' = 2).
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mental data for a given I'. In the numerics, the rods had a
form of spherocylinders, which helped in modeling contact
forces. The interaction forces among rods were calculated
via the interaction between viscoelastic virtual spheres of
diameter d centered at the closest points between the axes
of the spherocylinders [16]. Normal forces were computed
using the Hertzian spring-dashpot model, and dynamic
Coulomb friction was assumed for tangential forces.

We first performed simulations which matched the ex-
periment. We used aspect ratio A, = 2 and imposed elastic
boundary conditions on a circle of radius Rg = 34.2d
chosen to match the areal density in the experiments. For
F =0.25, V=0.16 which corresponds to I' = 2, rods
tend to aggregate at the boundary in agreement with ex-
periment. As F and V are increased, the aggregation at the
boundaries diminishes, also in accord with the experimen-
tal observations (see the numerical movies in the supple-
mentary material [19]). To compare the aggregation of rods
in the experiments and simulations, we plot the projected
rod area fraction p as a function of distance from the center
r in Fig. 2(c).

Clustering at the walls is not simply a consequence of
inelastic collisions. Indeed, it does not occur for small
A, = 1.1 [Fig. 2(d)], which indicates that particle shape
affects aggregation. When fluctuations are small (at small
I'), rods have a much lower probability of turning around
and leaving the wall than spherical particles, and so they
are trapped near the wall for a long time.

In order to characterize the density fluctuations inside
the container, we computed the standard deviation An and
the mean n of the number of rods in areas of different sizes
[see Fig. 3(a)]. The distributions were obtained by averag-
ing over 1500 frames in the statistically stationary regime,
and we restricted the area of measurements to /R < 0.7 to
minimize boundary effects. The slope of An(n) is system-
atically higher than /n. In fact, it is better described by the
power 7/12 which is predicted by the dynamic XY model
[6] in the nematic state. At very high values of n the
standard deviation drops down, as should be expected since
the number of rods becomes comparable with the total
number of rods in the container. We also examined a larger
system with R; = 2.5R, and almost an order of magnitude
greater number of rods [Fig. 3(a)]. The deviations from \/n
are also clearly present in this larger system. It is interest-
ing to contrast these results with “giant” (An ~ n) fluctu-
ations reported for apolar rods [4,10,15]. Although rods in
our system have apolar shape, they have mass anisotropy
which renders them polar. This polarity appears to destroy
the emergence of giant density fluctuations, although
greater than \/n flucuations showing clustering is observed.

Although global orientational order is clearly absent in
our system, there is strong evidence of the local orienta-
tional order at sufficiently high density of rods. We can
characterize this ordering by computing a local orienta-
tional order parameter Q which we define as Q = (cos20),
where O is the angle between directors of a rod and its
nearest neighbor and brackets indicate averaging over all

204 (a) e

log(An)

FIG. 3 (color online). (a) The standard deviation of the number
of rods An versus mean number of rods n inside a circular area at
the center of the container (I' = 3). Open symbols correspond to
the simulations for a larger system size R; = 2.5Rg but the same
density. A fit to the data gives a slope 0.66 = 0.05, which
indicates clustering. (b),(c) Local orientational order parameter
Q for nearest neighbors from simulation data for polar and
apolar particles as a function of (b) density and (c) aspect ratio.

the rods in the container and time [see Figs. 3(b) and 3(c)].
Parameter Q is similar to the parameter S introduced in [4]
and shows significant local orientational order present in
our system at high enough p and A,. We carried out similar
calculations with apolar particles and found that in the
asymptotic regime they exhibit similar (albeit slightly
smaller) values of Q. This can be understood since both
simulations featured the same magnitude of the fluctuating
component of the driving force which created similar
“effective temperature’’ that in turn determined the value
of the nematic order parameter. Apparently, the ‘self-
propelled” directed motion of the rods by itself has a small
effect on the ordering properties of the system.

Collective motion of rods in the container is masked by
the strong random fluctuations, especially at high I'. To
average over fluctuations, we divided the field of view into
2d X 2d boxes and averaged the velocity field over the box
area and over a 7 = 5 second time interval [Fig. 4(a)]. The
velocity field reveals a number of streams and swirls.
Numerical simulations for similar parameters also show
swirl-like structures [see Fig. 4(b)]. The coherent struc-
tures become more pronounced when the system size is
increased [Fig. 4(c)]. These structures are reminiscent of
swirls obtained with apolar particles driven by the substrate
[11,14,21]; however, in that system the mechanism of their
generation appears to be rather different.
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FIG. 4 (color online). Swirling in time-averaged velocity ob-
tained by computing particle displacements after 7 =35 s:
(a) experiment (I' = 3, N = 900), (b) numerics (Fy = 1.0, p =
0.68), and (c) example of swirls observed in a larger numerical
system (N = 5500, R; = 2.5Ry). (d) Spatial velocity correlation
function C(r) as a function of distance between two rods (I' = 3,
p = 0.31, p = 0.65); results of simulations are shown for small
(Rg = 34.2d) and large (R; = 2.5Rg) system sizes and for the
same density p = 0.68. (e) The distribution of the angle between
rod orientation and its velocity.

To quantify the structure of swirls, we plot in Fig. 4(d)
the spatial velocity correlation function C(r) =
(vy * vo)/{lv{l|v5|) for a rod with velocity v, and a rod
with velocity v, separated by distance r. The correlations
decay over a distance of a few rod lengths which confirms
the lack of the long-range order in the system. However,
the structure of the velocity field is strongly correlated with
the orientation of the rods. We computed the distribution of
the angle between the direction of the velocity field 6 in
and the mean orientation within a (2d X 2d) box both in
experiment and numerical simulations [Fig. 4(e)]. As seen
in Fig. 4(e), there is a significant maximum of this distri-
bution at angle 0, which indicates that rods predominantly
move along their axes.

In summary, we have studied the collective dynamics of
self-propelled polar rods with experiments and numerical
simulations. The phenomenology differs qualitatively from
that of collective motion of pointlike or round self-
propelled particles [4,5] which show no tendency to ag-
gregate near the walls and apolar rods which exhibit giant
density fluctuations. We observe aggregation of rods at the
boundaries because of the inability of rods to turn around
and escape under low noise conditions. As vibration
strength and thus noise is increased, the aggregation re-
duces and a uniformly distributed state displaying local
orientational order and swirls are observed. Although our
numerical and (especially) experimental studies were con-
ducted in fairly small systems, the accumulation of par-
ticles near the boundaries is expected for any closed sys-

tem. However, whether or not the steady state distribution
in the bulk for very large closed systems converges to that
for large periodic boundary conditions is an open question.
We observe greater than /n density fluctuations which are
not accounted for by existing models and deserve further
study. In conclusion, our findings elucidate an important
and interesting interplay between the shape and the di-
rected motion in realistic self-propelled rods which pro-
foundly affects their collective dynamics.
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