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We study the gapped phase of the Kitaev model on the honeycomb lattice using perturbative continuous
unitary transformations. The effective low-energy Hamiltonian is found to be an extended toric code with
interacting anyons. High-energy excitations are emerging free fermions which are composed of hard-core
bosons with an attached string of spin operators. The excitation spectrum is mapped onto that of a single
particle hopping on a square lattice in a magnetic field. We also illustrate how to compute correlation
functions in this framework. The present approach yields analytical perturbative results in the thermo-
dynamical limit without using the Majorana or the Jordan-Wigner fermionization initially proposed to
solve this problem.
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The study of elementary excitations in strongly corre-
lated systems is a fascinating field of current research. As
exemplified in the fractional quantum Hall effect, such
excitations can be very different from the elementary con-
stituents present in the system. In the same spirit, emergent
fermions and gauge fields in purely boson or spin systems
have attracted much attention recently [1]. The emergence
of anyonic excitations in two-dimensional systems has also
triggered a tremendous amount of interest, especially since
its relevance for topological quantum computation (see
Ref. [2] for a recent review) has been pointed out by
Kitaev in a seminal paper [3] introducing the celebrated
toric code.

More recently, Kitaev introduced a more realistic model
[4] for which experiments using ultracold atoms or polar
molecules have been proposed [5,6]. This model is a two-
dimensional spin-1=2 system on the honeycomb or brick-
wall lattice, as illustrated in Fig. 1. It consists solely of
Ising-like interactions but in different quantization axis.
More precisely, the Hamiltonian reads

 H � �
X

��x;y;z

X

�-links

J���i �
�
j ; (1)

where��i are the usual Pauli matrices at site i. Without loss
of generality [4], in the following, we assume J� � 0 for
all � and Jz � Jx, Jy.

Kitaev solved the model exactly by introducing
Majorana fermions to represent the spin operators in an
extended Hilbert space. In this way, the Hamiltonian is
reduced to free fermions in a static Z2 gauge field on the
honeycomb lattice. The physical states are selected by a
projection step which simply amounts to a selection rule on
the parity of the number of fermions [7], in agreement with
the general conclusions of Ref. [8]. The system exhibits a
gapless phase for Jx � Jy > Jz, with non-Abelian anyonic
excitations arising when a magnetic field is switched on

[4]. A contrario, for Jx � Jy < Jz, the system is gapped and
the low-energy effective Hamiltonian, at lowest nontrivial
order in perturbation (Jx, Jy � Jz) and periodic bound-
ary conditions, turns out to be exactly the toric code.
Consequently, at this order, free Abelian anyons are
present in the gapped phase.

Note also that an alternative treatment has been pro-
posed [9–11] based on the Jordan-Wigner transformation
which transforms the spin system into a system of fermions
with p-wave BCS pairing and a site-dependent chemical
potential.

In this Letter, we focus on the gapped phase, and we
derive the low- and high-energy effective theory at high-
order in perturbation. This allows us to show that (i) the
low-energy effective Hamiltonian is an extended toric code
Hamiltonian with still static but interacting Abelian any-
ons, and (ii) the high-energy excitations are free fermions,
composed of a hard-core boson with an attached string of
spin operators, hopping on a square lattice embedded in a
magnetic field.

Our approach has some advantages which compensate
for its perturbative nature and its restriction to the gapped

FIG. 1 (color online). Mapping of the brick-wall lattice (a) to
an effective square lattice (b) with unit basis vectors n1 and n2.
The numbering of the sites of a plaquette p is shown in both
cases.
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phase. It provides a unified picture of the emergence of
high- and low-energy excitations without introducing fer-
mionic fields by hand as is done with Majorana or Jordan-
Wigner fermionization. In addition, we work, from the
beginning, in the thermodynamical limit, and derive ana-
lytical results for non-translational-invariant low-energy
states.

Let us consider the model in the limit Jx, Jy � Jz. In the
limiting case Jx � Jy � 0, the model is a collection of
isolated z-dimers. Each dimer has four possible configura-
tions : two low-energy states fj""i; j##ig with energy �Jz
and two high-energy states fj"#i; j#"ig with energy Jz. It is
thus natural to interpret the change from a ferromagnetic to
an antiferromagnetic dimer configuration as the creation of
a particle, with an energy cost that we set equal to 1 by
choosing Jz � 1=2. By construction, these particles are
hard-core bosons hopping on the sites of an effective
square lattice (see Fig. 1), together with an effective
spin-1=2 indicating which kind of (anti-)ferro dimer con-
figuration is realized. Among the four possible mappings,
we choose the following:

 j""i � j* 0i; j##i � j+ 0i; j"#i � j* 1i; j#"i � j+ 1i; (2)

where the left (right) spin is the one of the black (white)
site of the dimer, and double arrows represent the state of
the effective spin. Let us denote by byi (bi) the creation
(annihilation) operator of a hard-core boson at site i (bold
letters denote effective sites), and ��i the Pauli matrices of
the effective spin at the same site. With this notation, the
number of bosons in the system is Q �

P
ib
y
i bi, and the

Hamiltonian (1) can be rewritten as [7]

 H � �
N
2
�Q� T0 � T�2 � T�2; (3)

where N is the number of z-dimers,

 T0 � �
X

i

�Jxt
i�n1
i � Jyt

i�n2
i � h:c:�; (4)

 T�2 � �
X

i

�Jxv
i�n1
i � Jyv

i�n2
i � � Ty�2; (5)

with hopping and pair creation operators

 ti�n1
i � byi�n1

bi�
x
i�n1

; ti�n2
i � �ibyi�n2

bi�
y
i�n2

�zi ;

(6)

 vi�n1
i � byi�n1

byi �
x
i�n1

; vi�n2
i � ibyi�n2

byi �
y
i�n2

�zi :

(7)

The vectors n1 and n2 are shown in Fig. 1(b). Let us
underline that �Wp; t

j
i 	 � �Wp; v

j
i 	 � 0 for all (p, i, j)

where the conserved plaquette operators [4] read (with
notation given in Fig. 1)

 Wp � �x1�
y
2�

z
3�

x
4�

y
5�

z
6 � ��1�b

y
LbL�b

y
DbD�yL�

z
U�

y
R�

z
D: (8)

At this stage, note that both the mapping (2) and the
form of the Hamiltonian (3) are simply an alternative
description of the problem which is always valid, even in
a nonperturbative regime. The main difficulty resides in the
fact that, now, one has to deal with hard-core bosons
coupled to effective spin degrees of freedom. Of course,
one could use a fermionization trick and solve the model
directly as done by Kitaev [4]. However, the procedure
used in the following can be applied to nonexactly solvable
models and further allows, in the present case, for a clear
identification of the excitations.

In general, a Hamiltonian of the form (3) cannot be
diagonalized exactly. Here, following Kitaev, we choose
to treat it perturbatively in the limit Jx, Jy � Jz. Never-
theless, the Green’s functions method used in Ref. [4] turns
out to be rather hard to implement at high order and/or high
energy. Instead, we use an alternative approach based on
continuous unitary transformations (CUTs) [12] whose
perturbative version [13,14] is especially well-suited to
the problem at hand. Technical details will be given in a
forthcoming publication [7].

The main idea is to transform the Hamiltonian (3) which
does not conserve the number of bosons into an effective
Hamiltonian Heff which satisfies �Heff ; Q	 � 0. As ex-
plained in Ref. [15], Heff is a sum of k-quasi-particle
(QP) operators with k 2 N. The k � 0, 1 contributions
can be written as

 H0qp
eff � E0 �

X

fp1;...;png

Cp1;...;pnWp1
Wp2

. . .Wpn; (9)

 H1qp
eff � �Q�

X

fj1;...;jng

Dj1;...;jn t
jn
jn�1

. . . tj3
j2
tj2
j1
: (10)

Here, fp1; p2; . . . ; png denotes a set of n plaquettes, and the
sum, fj1; . . . ; jng represents a sequence of n connected
sites. The perturbative aspect comes from the fact that
the coefficients appearing in Heff are obtained as series
expansions in Jx and Jy. We have computed the 0-QP
amplitudes E0 and Cp1;...;pn up to order 10 and the 1-QP
amplitudes� andDj1;...;jn up to order 4. These expressions,
being quite lengthy, will be given in a longer paper [7], as
well as a discussion of (k � 2)-QP sectors.

Let us first discuss the low-energy physics, i.e., the
spectrum of H0qp

eff . The most striking result is that the latter
is only expressed in terms of the conserved quantities
Wpj0qp � �yL�

z
U�

y
R�

z
D. Thus, for any (vortex) configuration

of theWp’s which can take two values
1, one readily gets
the ground state energy of the corresponding sector. We
wish to emphasize that at order 4 (lowest nontrivial order),
as already discussed by Kitaev [4], the only nonvanishing
contribution (apart from E0) involves only single plaquette
terms, and one recovers the toric code Hamiltonian with its
Abelian anyons [3]. At order 6, one gets the following
corrections to these terms:
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E0

N
� �

1

2
�
J2
x � J

2
y

2
�
J4
x � J

4
y

8
�
J6
x � J

6
y

8
; (11)

 Cp �
1

2
J2
xJ2
y �

J4
xJ

2
y � J

2
xJ

4
y

4
; (12)

but, more interestingly, one also has some two-plaquette
terms:

 Cp;p�n1
�

7

8
J4
xJ

2
y; Cp;p�n2

�
7

8
J2
xJ

4
y: (13)

Actually, when increasing the perturbation theory order,
one generates higher and higher multi-plaquette terms.
Thus, the low-energy effective theory of the Kitaev model
turns out to be an interacting anyon theory whose eigen-
states are those of the toric code. The single-vortex energy
and the two vortices interaction energies of three configu-
rations are given in Fig. 2 at order 10, for Jx � Jy � J. It
should finally be noticed that although the vortices interact,
they remain static since Wp’s are conserved quantities.

In each sector defined by a configuration of theWp’s, we
shall now see that the excitation spectrum is of fermionic
nature. As proposed by Levin and Wen [8], the statistics
can be directly determined from the hopping operators
algebra. Let us consider the exchange process depicted in
Fig. 3. The corresponding operator sequence is

 tji t
i
kt
l
it
i
jt
k
i t
i
l � �1; (14)

or, equivalently, tijt
k
i t
i
l � �t

i
lt
k
i t
i
j. This latter identity shows

that the quasiparticles made of a hard-core boson and an
effective spin-1=2 obey fermionic statistics.

We shall now see that solving the excitation spectrum is
completely equivalent to solving a problem of free fermi-
ons in a magnetic field on the square lattice. Therefore, let
us focus on the first-order perturbation theory for which
H1qp

eff � Q� T0 and consider a single quasiparticle. Then,
one can easily see that the momenta �H1qp

eff � 1�m for all m
are strictly equal to those of a pure hopping fermion
Hamiltonian in a magnetic field provided the magnetic
flux per plaquette mimics the configuration of the Wp’s.
This is easily seen by noting that the product of the hopping
operator around a plaquette p is given by tilt

l
kt
k
jt
j
i � Wp,

with fi; j; k; lg being any sequence of connected sites
chosen among L, U, R, and D (see Fig. 1).

The Wp’s being conserved quantities, from a purely
spectral point of view one can replace the Pauli matrices
in the hopping operators by pure numbers
1 constraining
the fluxes per plaquette (in unit of the flux quantum) to be
�p � 0 for Wp � �1 or �p � 1=2 for Wp � �1. At
higher order, this mapping remains true (with hoppings
from one site to any other site), but one needs to go beyond
this simple argument to prove the correspondence between
both spectra [7]. Let us simply mention that this is done by
building a basis of the 1-QP subspace, which turns out to be
made of states with one string of spin flips attached to one
hard-core boson (yielding a fermion), as can be inferred
from the form (6) of the hopping operators, and illustrated
in Fig. 4. Note that the string fluctuates, as in the construc-
tion of anyons in [3].

To illustrate the mapping, let us consider the 1-QP
vortex free state (Wp � �1, 8p). The spectrum of H1qp

eff

is made of a single band whose dispersion relation is given,
at second order, by

 Efree�kx; ky� � 1� 2�Jx cos�kx� � Jy cos�ky�	

� 2�Jx sin�kx� � Jy sin�ky�	2; (15)

FIG. 2 (color online). One-anyon and some two-anyon con-
figurations ( gray plaquettes) on a vortex-free background. �E1v
(�E2v) is the energy cost for adding one vortex (two vortices) to
the vortex-free state. We have set Jx � Jy � J.

FIG. 3 (color online). Illustration of the exchange of two
particles discussed in the text, for j � i� n2, k � i� n1, and
l � i� n2.
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where the wave vector �kx; ky� 2 ���;�	 � ���;�	. The
gap in this sector is then obtained by minimizing Efree, and
one gets �free � 1� 2�Jx � Jy�. Note that, in this case, the
perturbative result at order 1 coincides with the nonpertur-
bative result obtained by Kitaev [4] and one recovers the
transition point at Jx � Jy � 1=2 � Jz.

Let us complete our analysis with a comparison to the
Majorana (or Jordan-Wigner) fermion formalism. In the
latter, one can compute the full spectrum exactly, by di-
agonalizing, for each configuration of the Wp’s with 2N
spins, a 2N � 2N matrix. Within our approach, we have a
N � N matrix to consider. Although we have seen that
analytical (perturbative) results can be obtained for H0qp

eff ,
even for non-translational-invariant Wp’s, for H1qp

eff , the
problem is thus essentially as complicated as in the
Majorana (or Jordan-Wigner) fermion formalism. In this
case, the main interest of our method is thus to give a
physical picture of the high-energy excitations as emerging
fermions.

Furthermore, the continuous unitary transformations al-
low for the calculation of correlation functions. In the 0-QP
subspace, as we show below, some of these can again be
expressed as a series in Wp operators, as was the case for

the eigenvalues of H0qp
eff . Here, we focus on the correlation

function Czzi � h�
z
i;��

z
i;i where i, � and i,  are the black

and white sites of a given z-dimer i (see Fig. 1). Such a
correlation function can be computed exactly for a trans-
lationally invariant configuration of Wp’s, either by using
the technique developed in [16] or, in a much simpler way,
thanks to the Hellman-Feynman theorem [7]. However,
none of these two methods can be used efficiently for a
non-translational-invariant configuration of the Wp’s.

As a first step, one has to translate Czzi into the effective
spin and boson degrees of freedom, which yields Czzi �
h��1�b

y
i
bi i. Then, the observable appearing in the angular

brackets has to be transformed with the same unitary trans-
formation as the one applied to the Hamiltonian [7,15]. As
an illustration, we give the result in Fig. 5 at order 4 which
is the lowest nontrivial order where the Wp’s appear in the
expansion. Note that we have used the same notation W for
the operator and its expectation value on a 0-QP state. This
result shows how the correlation function is modified by

the presence of surrounding anyons. Of course, at higher
order, anyons further apart would also contribute [7] as was
already the case for the spectrum of H0qp

eff .
To conclude, we wish to emphasize that the method we

have used here, based on a perturbative approach of the
CUTs, can be applied to nonexactly solvable models as
well. In addition, as we have shown, it is especially effi-
cient to compute the spectrum but also the expectation
value of observables, even at high order in perturbation.
Thus, we strongly hope that it constitutes a powerful tool to
investigate, for instance, the non-Abelian anyons recently
proposed by Yao and Kivelson for a time-reversal symme-
try breaking version of the Kitaev model [7,17].
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discussions.

*kaiphillip.schmidt@epfl.ch
†sdusuel@gmail.com
‡vidal@lptmc.jussieu.fr

[1] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, New York, 2004).

[2] S. D. Sarma, M. Freedman, C. Nayak, S. H. Simon, and
A. Stern, arXiv:0707.1889 [Rev. Mod. Phys. (to be
published)].

[3] A. Y. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[4] A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).
[5] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett.

91, 090402 (2003).
[6] A. Micheli, G. K. Brennen, and P. Zoller, Nature Phys. 2,

341 (2006).
[7] J. Vidal, K. P. Schmidt, and S. Dusuel (unpublished).
[8] M. Levin and X.-G. Wen, Phys. Rev. B 67, 245316 (2003).
[9] H.-D. Chen and J. Hu, Phys. Rev. B 76, 193101 (2007).

[10] H.-D. Chen and Z. Nussinov, arXiv:cond-mat/0703633.
[11] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Phys. Rev. Lett.

98, 087204 (2007).
[12] F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994).
[13] J. Stein, J. Stat. Phys. 88, 487 (1997).
[14] C. Knetter and G. S. Uhrig, Eur. Phys. J. B 13, 209 (2000).
[15] C. Knetter, K. P. Schmidt, and G. S. Uhrig, J. Phys. A 36,

7889 (2003).
[16] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett.

98, 247201 (2007).
[17] H. Yao and S. A. Kivelson, Phys. Rev. Lett. 99, 247203

(2007).

FIG. 5 (color online). Perturbative expansion at order 4, of the
correlation function Czzi defined in the text, in the 0-QP subspace.

FIG. 4 (color online). Pictorial representation of an emergent
fermion as a composite object made of a hard-core boson (dot)
and an attached string of spin-flips (thick line). Gray plaquettes
are anyons, as in Fig. 2.
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